
.
* *
*
*

*
*

* U S L / D B M S N A S A / R E C O N *
* *
* *
* W O R K I N G P A P E R S E R I E S *
* *

Re po r t Numbe r

* *
* *
.

The USL/DIMS NASA/RECO[N Working Paper Series contains a
collection of reports representing r e s u l t s of activities being
conducted by the Center for Advanced Computer Studies of the
university of Southwestern Louisiana pursuant to the
specifications of National Aeronautics and Space Administration
Contract Number NASW-3846. The work on this contract is being
performed jointly by the University of Southwestern Louisiana and
Southern University.

For more information, contact:

Wayne D. Dominick

Editor
USL/DBUIS NASA/RECXYNWorking Paper Series

Center for Advanced Computer Studies
University of Southwestern Louisiana

P. 0. Box 44330
Lafayette, Louisiana 70504

(318) 231-6308

A Personal Computer-based Protocols for Interface Prototyping and Evaluation (PC/PIPE) system is
proposed. The system will be composed of two main components. The first component will be a set of
tools to support the design and implementation of a user interface. The second component will be a
set of run-time support tools which will handle interaction between the user and the system, and will
provide facilities for monitoring user interactions for conducting serious evaluations of user interfaces.

This report represents one of the 72 attachment reports to the University of Southwestern Louisiana’s
Final Report on NASA Grant NGT-19-010.900. Accordingly, appropriate care should be taken in
using this report out of the context of the full Final Report.

A M E ' I ' H O D O ~ Y F O R THE

DESIGN AND EVAL.UATIoki OF USER INTERFACES

FOR INTERACI'IVE INFOMATIO[N SYSTEMS

A Dissertation Prospectus

Presented to

T h e Graduate Faculty of

T h e University of Southwestern Louisiana

In Partial Fulfillment of the

Requirement8 for the Degree

Doctor of Philosophy

T

M o h a n m a d U. Farooq

Spring 1986

DISSERTATION PROSPECTUS

Major: Computer Science

Tentative Title: A M e t h o d o l o g y for the Design and Evaluation of
User Interfaces for Interactive Information
Systems

Moh;rmnad U. Farooq Student:

Ap p r ova 1 Re c opme nd e d :

W a y n C D. Dominick. Chairperson
Associate Professor
C e n t e r for Advanced Computer
Studies

Lois M. L. Delcambre
Assistant Professor
C e n t e r for Advanced Computer
Studies

W i l l i a m R. Edwards, Jr.
Associare Professor
Center for Advanced Computer
Studies

.
Joan T. Ca i n
Dean, Graduate Schoo l

ABSTRACT

Software development research is experiencing a significant
shift in research emphasis from producing m o r e elegant and faster
algorithms toward producing m o r e user-oriented systems.
Researchers in psychology, human factors, computer science, and
related disciplines have started serious analyses of human
computer interactions. I t h a s been recognized by the researchers
that the design of good user interfaces is m o r e of a n art f o r m
t h a n a science or engineering discipline. Also, methodologies
and tools are lacking for designing, implementing, maintaining,
and evaluating user interfaces for information systems.

T h e major objectives of this research are: the development
o f a comprehensive, objective, and generalizable methodology for
the design and evaluation o f user interfaces for information
systems; the development of equations and/or analytical models to
characterize user behavior and the performance of a Cesignsd
interface; the design o f a prototype system for the development
a n d administration of user interfaces; and the design and use of
controlled experiments to support the research and testlvalidate
the proposed methodology.

T h e proposed design methodology views the user interface as
a virtual machine composed o f three layers: a n interactive layer,
a dialogue manager layer, and a n application interface layer. A
conmand language model of user system interactions is presented
because o f its inherent simplicity and structured approach based
on interaction events. All interaction events have a conxnon
~ t r u c t u r e based on common generic elements necessary for a
successful dialogue. I t is shown that, using this model, various
types of interfaces could be designed and implemented to
accomnodate various categories of users. T h e implementation
methodology is discussed in terms of h o w to represent the various
types o f information pertaining to a n interaction event, and how
to store and organize the information.

A generalized evaluation methodology is also proposed for
the evaluation of user interfaces. T h e methodology will allow
interface developers to evaluate user interfaces f r o m the
viewpoint of the performance of their users. A Personal
Computer-based Protocols for Interface Prototyping and Evaluation
(PUPIPE) system i s proposed. T h e s y s t e m w i l l be composed o f two
main components. T h e first component will be a set of tools to
support the design and implementation of a user interface. T h e
second component will be 8 set of run-time support tools w h i c h
will handle interaction between the user and the system, and will
provide facilities for monitoring user interactions for
conducting serious evaluations of user interfaces.

i i i

TABLE OF U X I ' E N T S

1 .

2 .

3 .

4 .

LIST OF FIGURES ... vi

PAGE

I..U.I(JN ... 1

1.1 The Problem ... 1

1.2 Formal Tools for the Development of User Interfaces . 5

RESEARCH AND DEVELOPMENT OBJECTIVES 10
2.1 General Research O b j e c t i v e s 10

2.2 Specific Research Ob j e c t i v e s 1 1

2.2.1 Methodological O b j e c t i v e s 11

2.2.2 Theoretical Objectives 14

2.2.3 System Design Objectives 15

2.2.4 Application Objectives 17

-

2.2.5 Experimental Design Objectives 18
2.2.6 Evaluation Objectives 19

PROPOSED ME-LY 23
3 . 1 User Interface as a Virtual Machine 23
3.2 AModel of U s e r System Interaction 28
3.3 Implementation Methodology 39

3.4 Evaluation Methodology 40

3.5 Sumnnry of Proposed Methodology 53
BAaGROUND AND STATE.OF.THE.ART 55

4.1 U s e r Research in Computer Science 55
4.2 Survey of Specification Techniques 59
4.3 Analytical Studies of User System Interaction 64
4.4 Research on User M o d e l s 66

iv

5 .

P

4.5 Survey of User Interface Management Systems 72
PROTOCOLS FOR INTERFACE PROTOTYPIW AND EVALUATIW
SYSTEM (PIPE) .. 76

S.l Role of PIPE .. 76

5.2 T h e Proposed System 78

5.2.1 User Interface Design Subsystem 79
5.2.2 U s e r Interface Execution Subsystem 81

6 . SCPVMARY OF PROPOSED RESEARCH 83

REFEReJCES .. 86

LIST OF FIGURES

PAGE

3-1 Definition of a User Interface 24
3-2 Functions of a User Interface 25

3-3 Layers of a User Interface 27
3-4 Main Phases of an Interaction Event 32

3-5 The Event Cycle .. 35
3-6 Transition Control Primitives 38
3-7 U s e r Interface Monitoring and Evaluation Schematic 44

vi

1. I N T R ~ I O N

"Man must become the prime focus of s y s t e m design. T h e

computer i s there to serve him, to obtain information for him,

and to help him d o his job. The ease with w h i c h he comnunicates

with i t will determine the extent to w h i c h h e uses it. W h e t h e r

or not h e uses i t powerfully will depend upon the man-machine

language available to him and h o w w e l l he i s able to understand

it." [MART731
T

I t is w i d e l y recognized by users of interactive information

systems (a particular class of software systems characterized by

conversational access to data [WASS84]) that the user interface

is often designed without serious consideration for the user on

the part of the designers. Implementation considerations such as

program speed and size have always figured prominently in the

design of most computer systems and these concerns often result

in design decisions w h i c h are awlrward for the user. T h e design

of a user interface is often perceived as secondary to the system

w h i c h i t serves. T h i s is a rather serious p r o b l e m in its own

right.

1

2

There are several reasons w h y software developers continue

to produce software products with poor user interfaces [A'IW84,

SCHV84, EHR183, -80, KRAU80]. For example:

1. Human engineering is expensive and there is not any real

consensus on what good human engineering is.

2. Software designers are not always aware of the poor human

engineering of their products.

3. T h e knowledge and background of the system designers and

that of the users of the system are often radically

different.
-

4. T h e definition of very high-level interfaces, including the

support of a subset of natural language, and the development

o f strategies to answer questions require a deep

understanding o f general psychology, psychology o f

languages, and linguistics, w h i c h are not intuitively

obvious to the designer.

5. Vendors assume that special training is essential for the

use of their products and therefore often do not really care

about the user interface.

6. Current methodology and software design tools d o not

adequately support the design, implementation, and

evaluation of user interfaces.

3

T h e failure to take the design of user interfaces seriously

c a n be remedied by a change in the attitudes of designers.

T h e r e is a n increasing awareness on the part of system designers

that ad hoc design processes, based on intuition and limited

experience, may have sufficed in the design of early programming

languages and interactive languages, but are insufficient for

designing user interfaces for information systems which are being

used by a n increasing number of diverse conmunities of users

[SHNE79]. W e also see a shift in the research emphasis f r o m

producing m o r e elegant and faster algorithms towards producing

user-oriented systems [BORG84]. Technological advances have m a d e

computers faster and m o r e powerful so that the speed of

algorithms i s no longer the most important issue. Development of

silicon chip microporocessors have m a d e computers m o r e and m o r e

inexpensive and accessible to a w i d e r spectrum of potential

users. Therefore, there have been many demands for m o r e

"user-friendly" systems, but w e d o not understand human-computer

compatibility well enough even to agree on what "user-friendly"

means. T h e U. S. National Research Council in a n important

policy report [USNRS3] calls for a workable definition of

"user-friendly"; a database o f cognitive population

characteristics related to human-computer performance; and, among

other things, a call for some consensus on a classification of

users.

4

Because of these needs, human-computer interaction has

become a n active area of research and has brought together a

m i x e d group of researchers in psychology, human factors, computer

science, and related disciplines [AlRO84, BORG841. Research in

human-computer interaction serves several goals [BORG84, REIS83,

rUIDRA8lbI. Some of this research is directed toward formulating

theory, as researchers attempt to understand the human processes

involved in comprehending and manipulating a complex system. Some

research uses human-computer interaction as a practical

application for understanding broader issues o f human behavior.

Still other research is directed toward evaluating a n e x i s t i ~ g

design or developing guidelines or priniciples for future systems

design. In a broad sense, all of this research eventually leads

to design issues - the better w e can understand the human

processes involved, the better w e can design systems to support

these processes.

T h e majority of human-computer interaction studies are

behavioral experiments. As Reisner [REIS831 points out, these

experiments are usually difficult, costly, and time consuming to

conduct. T h i s problem has serious consequences. Because of being

time consuming and costly, such experiments are frequently not

conducted at all. In the system design phase, failure t o uncover

usability problems can be disastrous to the end user. A system

w h i c h is poorly designed f r o m the viewpoint o f the user does

nothing to improve his quality of life. Another consequence is .

that experiments are run, but not r u n well. i t might be possible

that only the initial use of a system is tested, and not long

t e r m use. Only a f e w experimental subjects might be used, or

w o r s e yet, these users might not even be representative of the

actual users of the system. A further difficulty is that a n

implemented system is usually required on which to perform the

experiments. At the very least, a simulation o r a prototype is

frequently needed. By the time such a system is available, i t

m i g h t be too late for experiments to meaningfully aid in the

s y s t e m design process. T h e lack of a theoretical understanding

o f principles of human factors is another serious difficulty,

w h i c h is also intellectually unsatisfying f o r the serious

researcher. M o s t experiments indicate whether a system m e e t s its

usability goals, or w h i c h of two system i s easier to use, o r

w h e r e users m a k e mistakes. T h e s e experiments d o not indicate why

these results are obtained.

W e understand human behavior m u c h less t h a n w e understand

computers; the designing o f user interfaces is one of t h e hardest

aspect o f systems design. Clearly, there is a need t o provide

better methodologies and tools for designing, implementing,

maintaining, and evaluating user interfaces for information

systems.

6

T h e proposed research addresser this need by providing a

methodology and tools for designing and evaluating user

interfaces. T h e approach presented in the proposed research

recognizes that the creation of a user interface requires special

skills, special system capabilities, special tools, and special

methodologies because i t is a n intrinsically different activity

f r o m the coding of computational algorithms.

There are several important reasons for introducing formal

tools and methodologies into the task of producing w e l l

engineered user interfaces. O n e reason is that, in the current

state o f the field, there are too many unsupported, sometimes
-

conflicting, design priniciples [GEBH78, hdAGU82, SHNE80, WILS821.

M o s t of these guidelines are based on the intuition and

experience of particular designers with particular systems. F e w

o f these intuitions have been evaluated experimentally.

Carefully designed tools may be able to enforce consistency and

encourage the designer to use techniques selected for their

effectiveness on the basis of behavioral evidence. Another

reason is that current methodology requires interface design

logic to be treated as though i t w e r e the tedious detail of the

s y s t e m i t is designed to serve. As a consequence, a user

interface i s w o v e n into the software fabric in such a w a y that

software vendors and designers simply become committed to

inferior interfaces because they are too complex and expensive

to reprogram [EHRI83]. An example will illustrate this point.

7

M o s t programmers using a high-level language tend to specifify

input-output fonnatting at the point where the input-output

statements reference those format specifications. These details

are usually totally irrelevant to the computational task whose

logic w a s interrupted by the occurrence of the input-output

statements. Later, w h e n the formatting needs to be altered, i t

may be almost impossible to locate the code that produced the

erroneous format.

A m o r e important reason for introducing formal tools and

methodologies is that the design and programning of user

interfaces for interactive systems is a high-cost activity.

Industry surveys [RCWE83] indicate that around SO percent of the

coding effort in a typical data base application is usually spent

on the implementation of user interface routines. There are

conmercially available software systems, called application

generators, w h i c h are geared primarily to support data intensive

application development [MART82]. These systems have their

o r i g i n in the early report-generator systems, such as IBcll’S RPG.

Contemporary application generators typically consist of a

database management system, report generator, database query

language, graphics package, and special purpose software, such as

-

financial modeling or statistical analysis packages. An

investigation by Horowitz, Kemper, and Narasimhan [HJROSS]

indicated that there are very f e w application generators w h i c h

provide any facility for the tailoring of user interfaces.

a

E a s y to use tools w h i c h reduce the time and cost for

tailoring user interfaces are necessary for the design and

administration of user interfaces. The methodology presented in

this research will force the designer o f a system to think in a

specific w a y about the user interface by providing a separation

of interface and applications. The methodology will also assist

a designer in developing a system using a rapid prototyping

a p p r o a c h [BLIM82] to expedite the creation of user interfaces and

m a k e i t possible to change t h e m easily. M o r e importantly, this

research will contribute to changing the design of user interface

f r o m being a n ad hoc process to being structured and planned. -
A Personal Computer-based Protocols for Interface

Prototyping and Evaluation (PCIPIPE) system is proposed. T h e v i e w

presented in this research is similar to that of a data base

management system. A data base management system provides a

service primarily for a n application progranmer and can be

evaluated w e l l in terms of computational efficiency. W h i l e a n end

user d o e s benefit f r o m multiple access paths, data security,

recovery, and the like, the end user does not necessarily v i e w

these capabilities as principal goals of the data base management

s y s t e m [T"aU83]. However, the end user is the principal audience

of the PUPIPE.

An automated design system i s desirable for a variety of

reasons in addition to the obvious potential for saving some of

the expenses associated with interface design. F o r example, such

9

a system could produce more consistent user interfaces than those

produced b y one or m o r e human designers, and, as n e w knowledge

becomes available, i t will be easier to update the PC/PIPE’s data

(or knowledge) base than to update the knowledge base of all

individuals w h o design interfaces.

T h e r e are four research threads that the proposed research

will bring together: the notion of user models (characterization

o f users by system designers, system image provided by the

designers, and mental image of the system that shapes up in the

user’s mind), specification of user interfaces via formal

methods, analytical tools for evaluating user interfaces, and txe

use of behavioral tests of models of user computer interaction.

T h i s proposal i s centered around the research and development

objectives to be identified in Chapter 2.

2. RESEARCH AND DEVELOEMENT OBJEmIVES

The intent o f this chapter is to define the set of research

and development objectives which will structure and direct all of

the activities to be performed within the scope of this proposed

research. Research objectives are first stated in general terms

in Section 2.1 and then refined into specific research objectives

in Section 2.2.

2.1 General Besear& m e c t i v e s -
1. General Methodological Objective:

T h e development of a comprehensive, objective and

generalizable methodology for the design and evaluation o f

user interfaces for information systems.

2. General Theoretical Objective:

The development of equations and/or analytic models to

characterize user behavior and performance of the designed

interface.

3. General S y s t e m Design Objective:

T h e design of a prototype system for the development and

administration of user interfaces for interactive

information systems.

10

11

4. General Experiment D e s i g n and Implementation Objective:

T h e design and use of controlled experiments to support the

research and test/validate the proposed methodology.

5. General Application Objective:

T h e application of the methodology to the design,

implementation, and management of a coxxxnon user interface to

selected existing information systems environments. The

application environment for all of these activities will be

a c o m m n desktop microcomputer such as an IW PC.

6. General Evaluation Objective: *

T h e evaluation of the completeness, generalizability, and

overall quality of the methodology and its supportive

components.

T h e following subsections describe the specific objectives

of this research. These are refinements of their respective

general research objectives identified within Section 2.1.

2.2.1 W d o l a p i c a l Qbiectives

The following are the specific methodological objectives

identified for this research:

12

1. D e v e l o p a model o f user system interaction for evaluating

alternative user interface designs. T h e model should

provide support for multi-level user models, multi-level

interface models, and performance criteria.

ific- - T h e model will serve as a framework for

integrating design and evaluation studies for alternative

user interface designs and alternative user models.

Generalizability across applications and user tasks is the

main orientation of this model.

. .

2. Develop algorithms to predict user performance within

alternative user language designs for a given class o f

users.

. . ific- - Analytic models based upon the user model and

interface design model will predict the user performance

before the interface is actually implemented.

3. D e e i g n and conduct experiments to compare predicted

performance against actual performace (as measured by

automated monitoring facilities) in order to fine-tune the

prediction algorithms.

- T h e analytic models comprising the

performance prediction algorithms will be calibrated

according to empirical data for a given class o f users.

13

4. Incorporate the performance prediction algorithms into

PC/PIPE. Th i s incorporation will aid in the detection of

performance bottlenecks by exposing the m a j o r components of

observed (or predicted) performance and the contributing

factors in terms of underlying user interface design

structures.

nificanct, - T h e performance prediction algorithms will

become the core of PCIPIPE whose shell analyzes the input

. .

and output parameters to determine performance bottlenecks

and their major contributing factors.
v

5 . D e v e l o p a user interface design aid w h i c h will generate

interface designs to meet pre-specified user interface

performance criteria for a given class of users.

i c a p c e - T h e PCIPIPE will choose, f r o m available

language structures, a set which will either meet

pre-specified performance specifications or a set w h i c h will

yield "optimal" performance for a given class of users.

6. De v e l o p a user interface re-design tool w h i c h will determine

a n appropriate remedy, from a given set o f alternatives, for

a performance bottleneck detected within a n existing user

interface design.

c ~ c e - T h e re-design tool will be a part of the

PC/PIPE and will identify any potential bottlenecks created

14

by the redesign.

7. Examine the feasibility of performing dynamic redesign of

user interfaces based upon the chosen remedy for a

bottleneck.

. . ific- - Experiments will be designed and conducted to

determine the degree of performance improvements attained by

a suggested redesign of a n interface. If significant

performance improvements are detected, the interface

redesign can possbily be performed automatically, without

designer intervention. -r

8. Develop a mechanism to provide feedback into the redesign

tool so that past decisions and their effects c a n become a

part o f the decision process.

. . - Truly adaptive interfaces can only be

generated by making the system aware of i t s past

performance. T h e PCIPIPE philosophy will be a step toward

automated generation of adaptive interface designs.

2.2.2 m o r e t i c d QbiectiveS

T h e following are the specific theoretical objectives

identified for for this research:

1. Identify the primary measurement parameters w h i c h

characterize user interface performance.

15

. . Sipnlflcance - A m a j o r component of the user interface

evaluation model will be the identification of performance

m e t r i c s w h i c h span input devices and user models.

2. D e v e l o p a formal granmar to characterize the various actions

a user performs to interact w i t h a n information system.

ance - T h e formal gramnar will provide abstract

representation o f all actions performed by a user.

3. D e v e l o p formal models to predict user performance for

alternative interface designs for a given class of users.
-v

n 1 f 1 canc G - Analytical models will predict user . .

performance before the interface is actually implemented.

4. D e v e l o p formal models to characterize the user tasks w h i c h a

user i s trying to accomplish with the system.

i c m c e - T h e task model will provide a notation w h i c h

the designer can use when performing task analysis and

describing the problem a user i s trying to solve.

T h e following are the specific system design objectives

identified for this research:

1. R e d e s i g n and implement P C M S I using conventional software

development methodologies and programning tools.

16

ce - PC/MISI is a Personal C o m p u t e r - b a s e d M u l t i p l e
Information Systems Interface which will provide access to

remotely located information systems using one copmon

language [HALL84, HALL85a. HALLSSb]. This will serve as a n

experimental tool for benchmark purposes.

2. Design and implement a user interface development subsystem.

ificance - The s u b s y s t e m w i l l provide facilities to a n

interface designer for the specification and modification of

user interfaces.

. .

-
3. D e s i g n and implement a user interface execution subsystem.

i c m c e - T h e s u b s y s t e m w i l l provide runtime support

for the testing of designed interfaces.

4. De s i g n and implement storage structures for user interaction

sequences. i

IC- - Separate structures for interface logic and

dialogues will help in the rapid skeleton implementation of

user interfaces.

I

~ 5. D e s i g n and implement software monitor structures.

ic- - A software monitor will be built into the . .

developed user interface for evaluative purposes.

17

6. De s i g n and implement a centralized help facility for

PC/P I PE .
- An interface designer will not have to be a n

expert programner.

7. Design and implement design validation procedures.

nific- - Such procedures will allow the production o f

consistent user interfaces (similar user comnands for

. .

similar functions, consistent conventions for comnands and

abbreviations, and consistent reactions to user errors).

2.2.4 Bpalication Qbiectives

T h e following are the specific application objectives

identified for this research:

I . Implementation of PC/MISI user interface (menu level,

comnand level and direct access level of PC/MISI) using the

PCIPIPE.

Sipnlflcancc - T h i s implementation will illustrate the

applicability of the methodology to a coxxrnon interface with

different interaction modes.

. .

2. Implementation of performance prediction algorithms for

P C M S I user interfaces.

- T h i s implementation will illustrate the . . .

1 8

applicability of the prediction algorithms in a

microcomputer-based environment.

3. Implementation of the integration of all tools for both

design and evaluation of the user interfaces into a design

and evaluation system implemented on an IBM PC within the

USL NASA PC RBtD project [D(TulI84].

. .
~ P C C - T h i s implementation will illustrate the

applicability of the methodology to a vast group of current

and future users who are not professional programmers.

T h e following are the specific experimental design

objectives identified for this research:

1. D e s i g n of controlled usage experiments to gather data

pertaining to the use of the PC/PIPE.

c c - Such data must be collected to quantitatively

evaluate the usability of the tools.

2. De s i g n of controlled usage experiments to gather data

pertaining to the performance of individual user interfaces.

. .
p ~ k - T h e performance metrics defined by the user

interface evaluation model will be captured via the

automated monitoring facilities incorporated into the user

interface execution environment.

19

3. D e s i g n of controlled usage experiments to determine the
-

accuracy of the prediction algorithms.

u - The prediction algorithms will be fine tuned . .

according to empirical data collected.

4. D e s i g n of controlled usage experiments to determine

performance improvements resulting f r o m redesign of user

interfaces.

. . ific- - Monitor data regarding user performance will
be associated with specific user interface designs so that

significant changes in performance can be detected f;r

alternative designs.

I

5. T h e use of formal hypothesis-testing and experimental design

procedures supported by automated statistical analysis of

empirical monitor data in accordance with established

standards for conducting scientific research.

a f l ~ ~ - User interface design research often suffers
from a lack of discipline in terms o f experimental design.

All aspects of this research will be supported by careful

experimentation and analysis of results.

2.2.6 E v a l u a t i o n lQhLtctives

T h e following are the specific evaluation objectives

identified for this research:

20

1. Evaluation of the generalizability o f the methodology across
-

different applications.

nificancc - T h e methodology i s designed to apply to all . .

interactive applications.

2. Evaluation of the generalizability o f the methodology across

different user populations.

. . nificancc - T h e methodology i s designed to apply to a

variety of user types.

3. Evaluation of the completeness of the methodology. -
apcc - T h e methodology should be applicable t o a

broad range of user interfaces.

4. Evaluation of the objectivity of the various equations

and/or models w h i c h are used to quantify specific aspects of

user performance.

- T h e research should m e e t its goal of

objectivity by providing automated tools. T h e primary focus

will be on objective metrics. However, w h e n necessary,

subjective criteria will be identified as such along with

the reasons why objective metrics could not be formulated in

such cases.

5. Evaluation of the accuracy of the various equations/modtls

with respect to the phenomena these equations/models are

21

intended to model.
-

Slpnlflcanct - T h e equations/models should accurately model

the functions they are intended to model. Empirical monitor

. . .

data is used where applicable to verify the accuracy of

equations/models.

6. Evaluation of the overhead associated w i t h the incorporation

of software monitoring mechanisms into the execution

environment.

cance - T h e research will provide quantitative data

on the execution overhead w h i c h i s i n c u r r e d - b y continuozs

monitoring of the user interface activity for specific
,

interface/monitor environments.

7. Evaluation of the experiment conducted.

l l ~ l ~ e - T h e evaluation process will verify that the

experiments w e r e conducted in accordance with established

principles of experiment design.

8. Evaluation of the application of the methodology, atilyzing

automated monitoring facilities, supportive equations and/or

models and appropriate statistical and experimental design

techniques to the objective evaluations of user interface

performance as a whole and/or of the performance o f a

specific component of a user interface.

2 2

apcc - Because of monitor overhead, the amount of

data collected, the complexity of the equations/models, and
-

the complexity of the statistical analysis procedures

required, the objective approach has often been rejected,

and conventional, intuitive approaches to user interface

performance evaluation has been taken. Few systems have been

extensively monitored or modeled. T h e proposed research

strives to illustrate the feasibility, effectiveness and,

the practicality of a n objective approach to user interface

evaluation.

3. PROPOSED M E " R 0 D O D Y

In this chapter, several major concepts of design and

evaluation of user interfaces are explored. These concepts are

integrated into a preliminary methodology to achieve the desired

objectives o f this research. A user interface is treated as a

virtual machine and various levels of this machine are described

in Section 3.1. A m o d e l of user system interaction is described

in Section 3.2. I t will be shown that, using this model of

interaction, various types of interfaces could be designed a%d

implemented to acconmodate various categories of users. The

implementation methodology of the proposed model is discussed in

Section 3.3 and a generalized evaluation methodology is discussed

in Section 3.4. An introduction to a n automated facility using

the proposed methodology is given in Chapter 5 entitled

-Protocols for Interface Protyping and Evaluation System."

I t has b e e n recomnendcd that the user interface should be

separated as clearly as possible f r o m the rest o f the system

[BALL82, BRAN84, -82, -811. A user interface c a n be

thought of as consisting of a n input language for the user, a n

output language for the machine, and a protocol for interaction

rFOLE80, CHIU851. Figure 3-1 illustrates this definition of the

23

24

USER

user interface.
-

b
PROTOCOL SYSTEM

4
OUTPUT LANGUAGE

EXTERNAL 08SERVER

/
4
I

/
I

I
I

/
I

I
/

I
/

/ \
4 \

I \
/ \

\ /

USER INTERFACE

F i g u r e 3-1 Definition o f a U s e r I n t e r f a c e

A nser interface has three ideatffirble mode8 of operation which

could eqU8ll-7 w e l l be dsrcribcd 81 the fanctionr of the iaterfrce

(s e e F i g u r e 3-21.

1. I t may accept 8n input f r o m the u s e r , tranrfonn i t and cause

the transformed message8 to be given to the main system.

2. I t may cause what is in effect 8 transformed mersage to be

returned to the user.

3. I t may take 8 message f r o m the main system and transform it

into a meaningful form for presentation to the user.

1 . User input to system
2 . User i n p u t error
3; System output t o u s e r

Figure 3-2 Functions o f a User I n t e r f a c e

T h e second mode is quite similar to the firrt m o d e except

that t h e input is tranformed into an error message and the

recipient of the message is the user,

26

T h e identification of the operations of an interface as a

separable process leads to the idea that a separate processor

could be devoted to that process. Advanc eme n t i n

micro-electronics has made i t possible that a microcomputer can

be used to separate the interface f r o m the main system. The

interface might reside in a microprocessor, along w i t h the tools

for the design and administration of the interface. These tools

could certainly reside in a mini or mainframe computer, however,

the tools should be able to generate an interface w h i c h can

reside in the microprocessor. Arrangements of this kind isolate

the user f r o m the mainframe operating system and f r o m the

resident operating system, thus providing the user with a virtual

machine.

+

T h i s virtual machine has three lagers as shown in Figure

3-3. T h e interactive layer, the dialogue manager layer, and the

application interface layer. T h e interactive layer is

responsible for the physical appearance of the user interface

including all the device interactions. The dialogue driver

m a n a g e s the dialogue between the user and the system. The

application interface forms the interface between the user

interface and the rest of the program. I t provides the user

interface’s v i e w of the application program.

a7

USER
C &

U
5
E
R
I
N
T
E
R
F
A
C
E

I

INIERACTIVE'.
LAYER

APPLICATION PROGRAMS

F i g u r e 3-3 Layers of a User I n t e r f a c e

28

T h e s y s t e m proposed as part of this research (PC/YIPE) will
-

have interface specifications decomposed into these layers.

A k e y requirement of a n interface prototyping and evaluation

system is to provide a technique for the interface designer to

describe and organize the user interaction sequences. This

p r o b l e m is similar to that faced in the data base management area

to allow the programner to describe the data that is to be

m a n a g e d in a n application independent manner. A DavlS provides

this capability via a schema definition language w h i c h may &e

specific to a particular system and a n underlying data model.

T h e following subsections present criteria for evaluating the

specification technique proposed for this research.

A specification of user interfaces for interactive systems

m u s t satisfy a number of requirements if i t is to be useful. T h e

following criteria is established for evaluation purposes

[WASSSS, LISK751:

1. Formality. A specification technique should be formal, that

is, specification should be written in a notation w h i c h i s

m a t h e m a t i c a 1 1 y s ound .

29

2. Constructibility. It must be possible for a n interface

designer to construct specifications with less effort than
-

writing a program to implement that user interface.

3. Comprehensibility. The system developer or user trained in

the notation being used should be able to read a

specification and then reconstruct the interaction which the

specification is intended to describe. In other words, the

interface designer must be able to maintain sequences

described by others as a s y s t e m m a t u r e s .

4. Flexibility. T h e technique should provide the designer with

the capability of specifying a w i d e variety of dialogue

styles.

-

5. Portability. T h e technique should be device independent.

6. Executability. T h e specification should be directly

executable to eliminate the n e e d for writing programs to

implement the specifications.

7. Completeness. A full range of primitive user actions must be

supported as part of the interface specification. T h i s range

includes actions such as backing out o f a sequence

conveniently and accessing generally applicable functions

such as 'help'.

The following section presents a model of arer/system

interaction w h i c h satisfies the above requirements.

3 0

3.2.2 YIer &mum lnteract ion MIQdLL
-

T h e approach to user interface development presented here

represents the first stage in a n attempt to provide a

comprehensive and generalized model for the design and

implementation o f user interfaces. T h e model is general enough

to support m o s t of the customary techniques o f interaction

provided for end users of information systems. The user

interacts with a n information system through a aeries of prompts

to w h i c h the user responds with "coxxxnands" or "data". Although

such interaction may seem to provide a restricted interface f r o m

a language point of view, i t has the advantage that no +

programning knowledge is required by the information system user

to use it. M o r a n [MIRA80, m R A 8 l a I calls this "comnand language"

interaction because i t is characterized by a coxxxnand-execute

cyc 1 e. T h i s command language c a n be contrasted with a

programning language, in which a set of comnands is built before

execution. C o m n a n d language systems c a n a l s o be contrasted with

natural language systems. In the latter case, the variation is

the complexity o f the grarmrar and the subtlety o f interpretation.

T h e relatively simple nature of conmand language interaction

leads t o a structured approach to user interface definition.

T h e user system interactions are viewed as dialogues between

two parties. The meaning of the t e r m "dialogue" is intended to

include a broad range of types of exchange between users and

information systems. These exchanges may be in the f o r m of

31

character string8 (using a keyboard and visual display, for

example), or they could equally well include the depression of

function keys, the selection of graphical objects f r o m a

displayed image or the generation of shapes. In this model, the

dialogues are represented as a sequence of basic interaction

events. All interaction events have a corrmon structure based on

compon generic elements necessary for a successful dialogue. T h e

definition o f a user interface is m a d e up of the event

definitions and transition controls w h i c h define all the possible

sequences o f events. An interaction event is defined as a n

occurrence in the dialogue where the s y s t e m w a i t s for a n inwt

f r o m the user. T h e input may be a corrmand or data. T h e event is

finished w h e n the s y s t e m has finished processing the user input.

T h e w a y the dialogue proceeds to the next event depends on the

transition control actions which are considered part of the

current event. T h e entire interaction event is viewed as a

process w h i c h consists o f four main phases (see Figure 3 - 4) :

A. S y s t e m Prompt - Indication is made by the system that

a n input is expected f r o m the user.

B. U s e r Input - An input i s provided b y the user.

C. S y s t e m A c t i o n and Response - An action is taken by the

system according to the user input and a response i s

returned by the system.

D. Transition Control. - A decision is m a d e by the sjstem
-

to determine the iext interaction event.

* *

PROMPT ’ INPUT L

NEXT
EVENT

Figure 3-4 Main Phases o f an Interaction Event

1

T h e transition control simply directs control to the next

event. In this approach, all processing w h i c h occurs between the

current event and the next event is considered as the action of

the current event. An event is represented by a n event table and

e a c h element is input to a processor. T h e processing of the

entire event is one event cycle. W e will further elaborate on

e a c h of the above phases in the following paragraphs.

+

.

A. S y s t e m Prompt

T h e system prompt may be in the form o f 8 prompting

character, a prompting message or display of a menu asking

for the selection of a n item in the menu. Prompts may be

dynamically selected for presentation depending on the

current style of the dialogue or the preferences of the end

user.

33

B. U s e r Input

T h e user input may be "comnand" o r data. T h e "conanand" may

be one of the available comnands from the repertoire of

system comnands o r selection of a n item fr o m the displayed

menu. This input could equally well include the depression

of function keys. A blank input would be valid where the

system assumes a predefined default value as the response.

C. S y s t e m Action and Response

T h e system action depends on the user input. Various

possibilities exist; these are generically grouped as
-c

follows:

i . Retreat - If Input = "cancel" (meaning "do not proceed

with the current interaction event") then

a. "next event- indicator is set; and

b. current event cycle is ended.

i i . H e l p - If input = "help" then

a. additional assistance information is displayed; and

b. current event cycle is ended.

i i i . C h e c k - Input is checked. If errors exist and no

automatic error correction exists then

a. errors are reported; and

b. current event cycle is ended.

34

iv. Call application - Related applicatiori / database -

routine is called to process the users request.

T h e terms "cancel", "help" and "next event" are generic

names. T h e above ordering is important for transition

control actions. Any one of Retreat, Help, or Check m a y

abort the normal cycle. Retreat precedes any input

I

I

processing so this enables the user to interrupt a n event

w h i c h is not desired. I t sets the "next event" index to one

other than the current or the one w h i c h would have been

normally set by Transition Control. H e l p does not change

the "next event" index but i t does cause a repeat of the

I

+

"current event" cycle. To the user, H e l p will appear as a I

help message followed by a repeated prompt. In the case of I

errors w h i c h the system is not able t o correct, C h e c k w o u l d

cause the display of a n error m e s s a g e followed by a

repetition of the "current event" cycle s'imilar to Help.

i N o t e that H e l p and Check both a l l o w the completion of the

current event cycle, but do not prevent the user from

exiting the current cycle. I

3s

Figure 3-5 illurtrater the event cycle.

EVENT

I 1 --c

HELP - MESSAGE
, f r

NEXT
EVENT PROMPT INPUT 4 CHECK --b ACTION *

c A a \

c ERROR '
MESSAGE 'ERROR

I

"HELP" and "CANCEL" are i n p u t tokens

ERROR is a condition

F i g u r e 3-5 The Event Cycle

36

D. Transition Control

Transition Control directs the transfer to another or the

same event. Strictly speaking, this information i s not part

of the event definition, but rather the arc of a

conversation graph if w e v i e w the event as a conversation

graph [HAGG83]. However, i t is often convenient to handle

information associated with an outgoing arc a s a n integral

part of the predecessor node. T h e Transition Control allows

the selection of the next event based on the structured

programming control primitives (sequence, case, do-while).

T h e next selection could be based on any one of &e

following primitives (see Figure 3-6):

i. "Sequence" - predefined order of the events.

ii . "Select" - Any one of the predefined set o f events

based on a given control value.

i i i . "Conditional-transfer" - p r e - s e t to a n event when a

given control condition occurs.

-

37

EV€NT 1
A m

EVENT 2 EVENT 3

(i) Sequence

>

U
EVENT c "C'

. .
n z n

EVENT Z

TRUE
+ EVENT 1 ' *

(ii) Select

EVENT 2
1

FALSE

(iii) Conditional-Transfer

Figure 3-6 Transition Control Actions

38

The above control primitives also relate to different modes

of interaction and different schemes for defining comnands and

related data or arguments which are copmon in user system

interaction. T h e following three scenarios represent three

comnon occurrences in comnand languages.

1. T h e s y s t e m prompts for one data input, then f o r another. T h i s

case is implemented with the use of two events. T h e first

event will prompt for the first data element and will have a

pre-set "next" selection identifying a n event prompting for

the second data element. This way a "system guided" [GUEDIIO,

MILL771 dialogue could be effectively implemented.
+

2. The s y s t e m asks the user for a cormand, then for its

arguments. T h i s case is implemented with the use of two

events. T h e first event prompts the user for the name of a

comnand. Then, through the use of the "select" primitive,

control passes to the event which prompts the user for the

arguments of the particular first event. T h i s way a

"user-guided" [GUED80, MILL771 dialogue is implemented.

3. The input required by the system is comprised o f a l i s t of

arguments of indefinite length. This is implemented with one

interaction event with a "conditional-transfer" primitive.

The event h a s a pre-set next selection to itself. The end of

the list is indicated by the user by input o f a special value

representing the termination comnand.

39

In the above examples, the first example illustrates the

case w h e r e a user is led through a series of requests for data

(arguments) w h i c h end w i t h some processing. T h e second example

illustrates the comnand driven mode, and the third is a

combination of both w h e r e the system prompts for arguments, by

repeating the same interaction event, until a particular conxnand

(i.e., the special termination value) causes the dialogue to move

to a different event.

T h i s section discusses the implementation methodology fqr

the proposed interaction model. Event descriptions are

represented in a tabular form. An interaction event can be

described as a n ordered tuple:

<EVENT,ID; Prompt; Input (Default); Retreat: H e l p ; Check; Action;

Transition Control>

EVENT,ID is a n identifier unique to each event. Each other

element contains a n index to information pertaining to the

relevant phase in the event cycle. T h e information itself i s

organized in sets. E a c h set contains information o f the same type

or information w h i c h belongs to the same phase. E a c h m e m b e r of a

set may be referred to by entries in one o r m o r e event

descriptions. E a c h set member is identified by a unique (within

the set) identifier. Thus, the entries in the event description

tuples become references to set members. E a c h reference is a

40

pair <Set,ID;Member,ID> and each member in a set is a pair of

the form: <Member,ID; Information>.

T h e distinction between the event descriptions, which

contain the dialogue "logic", and the actual information about

text, processing definition, checks, etc., allows the two to be

developed separately. This separation allows for a quick

skeletal implementation w h i c h can be augmented later, for example

by adding input checks and help messages. This feature provides

the designer with support for prototyping. Also, the same event

may be implemented with various versions of text (prompt, help

and error messages) identifying levels of interface. A flag y n

each user's profile indicates w h i c h interface level is

appropriate to that user. This flag can be changed either by user

choice or by a n algorithm in the system based on a pre-specified

criteria, thus providing flexibility and customization o f

dialogue. T h e needs of different levels o f the user population

could be satisfied by the ability of the system to change easily

with evolving levels of user knowledge.

3.4 E v a b a t iQn -
In this section, a generalized evaluation methodology is I

proposed for evaluating user interfaces for information systems.

A generalized evaluation may be contrasted with a specific I

evaluation w h i c h is tailored to a particular purpose or
I

41

situation, such as the evaluation of a n information system to

determine its utility in a particular working environment. A

generalized evaluation focuses on the generic properties of a

user system interface rather than on the idiosyncrasies of

particular conmands. A generalized evaluation attempts to address

fundamental user interface issues and is thus applicable to a

variety of user interfaces. These issues include questions such

as:

(1) W h a t range of tasks can a user p e r f o r m w i t h a system?

(2) H o w long does it take a user to learn h o w to use a s y s t e m d o

perform a given set of tasks?

(3) W h a t types of errors are made and what is their frequency?

(4) How long does i t take a user to accomplish a given set of

tasks using the user interface?

A benefit of using a generalized evaluation methodology is

that a data base of consistent information about user interfaces

could be collected over a period of time. This infoxmation would

provide a standard for interpreting the results of any n e w

investigation, a crtical factor missing f r o m virtually all

existing evaluation studies. T h e methodology proposed herein

evaluates user interfaces f r o m the viewpoint of the performance

o f their users and will provide for the generation of a valuable

user interface performance data base of objective measures.

4 2

3.4.1 A G e n e r a l i d Evalaat hMethodalans

A general methodology applicable to the monitoring and

evaluation of any user interface for a computer based information

system i s composed of the following phases [IxMI78, B O W S] :

Determine the monitoring/evaluation objectives.

Determine the specific parameters to be monitored initially

based u p o n the overall objectives.

D e s i g n and implement the monitoring facility into the

s y s t em.

D e s i g n and implement the data validation

validate the monitored data.

Determine the data analysis tools to b e used

the m o n i t o r e d data.

D e s i g n and conduct the monitoring experiments

data to be analyzed.

+

procedures to

for analyzing

to collect the

P e r f o r m data validation on the monitored data.

After the experiment has been completed, p e r f o r m the data

analysis m a k i n g evaluations and drawing conclusions, as

appropriate.

Identify user interface improvements and enhancements as

implied by the results of the analysis.

43

(10) Identify monitor improvements and enhancements as implied by

the results of the analysis.

(11) Identify experimental design improvements and enhancements

as implied by the results of the analysis.

(1 2) Incorporate all identified improvements and enhancements and

repeat the cycle f r o m step 6.

Figure 3 - 7 presents the above phases, illustrating

parallelism w h e r e appropriate.

I L

1 1
SUGGESTED MONITORING
EXPER I E N T EXPERIMENT

STAFF

44

--+ IMPROVEMENTS +

DETERMINE DETERMINE
MONITORING PARAMETE8S
OBJECTIVES

MONITORED
IN IT I ALLY

b

1

3
DESIGN AND
IMPLEMfNT
SOFTWARE
MONITORING
FACILITY

4

IWROVEMENTS

12
USER INTERFACE

-IMPROVEMENTS +
d

f
INFORMATION SYSTEM

VALIDATION
PROCEDURES e MONITORED

l
'
I

5

DATA ANALYSIS INTERFACE
IMPROVEMENTS

I-
SYSTEM I
STAFF

6 7 10
DESIGN AN0 PERFORM SUGGESTED
CONDUCT DATA ANALYSIS AND MONITOR

EXPERIMENTS

I t

MONITORING -b VALIOATION -b EVALUATION *I IMPROVEMENTS

b
-

I
12
EXPERIMENT
IMPROVEMENTS

- 1

Figure 3-7 User Interface Monitoring and Evaluation Schematic

(Adapted from Dominick and Penniman [ooMI79 1)

45

T h e methodology proposed here will a l l o w interface

developers to evaluate user interfaces from the viewpoint of the

performance of their users. In developing this methodology the

following generic criteria will be used:

- Objectivity. T h e m e t h o d o l o g y m u s t not be biased in favor of I

any particular user interface structure.

- Thoroughness. T h e methodology must consider the multiple
I

aspects of an interface usage.

+
- Ease of Use. An interface developer/evaluator must be able

to evaluate the performance o f a n interface, identify

problem areas that exist, redesign the interface using the I

methodology, and cycle through the interface evaluation

process, as necessary.

I

T h e methodology proposed for this research will all o w the

interface developer to select specific evaluative data measures

f r o m a n available list of data measures. A software monitor will

automatically be generated and incorporated into the interface

designed. T h e monitor will collect the specified data measures at

execution time on the following levels: I

(1) Operation (or comnand) level

(2) T a s k level

(3) U s e r session level

46

(4) Usage period level.

T h i s capability will al l o w the interface developer to

iteratively evaluate and improve a user interface. I t will also

a l l o w the interface developer to compare alternative interface

designs. To compare different types of user interfaces, there

m u s t be a comnon ground on w h i c h to base the comparison. F o r this

purpose, tasks need to be identified. In the context of

Information Storage and Retrieval (I S d U t) systems, w h a t is

constant across all user interfaces i s the information storage

and retrieval tasks they permit their users to accomplish. There

are two primary functions that a n end user of a n I S 3 2 system
+

performs, namely, search and output. Although many other

capabilities may be provided, e.g., online help and tutorials,

computations, manipulations, statistical analysis, graphical

analysis, data base definition, data base maintenance (adding,

deleting, updating), ctc., the basic functions are those of data

base search, retrieval, and output.

Various tasks may be defined by the evaluator for analysis,

for example, various types of free text searching, selective

f i e l d searching, and boolean searching. T a s k definitions will

a l l o w the characterization of sequences of searches and output

operations into task-level units of analysis. The definitions of

tasks may be changed, added to, or deleted f r o m at any time as

n e e d s demand. A taxonomy of tasks m u s t be identified. T h e

functionality of a user interface is measured in terms of the s e t

4 7

of tasks in this taxonomy, by assessing h o w m a n y of the tasks the

user interfaces a l l o w users to perform. Comparison between user

interfaces concerning the time to perform a given set of tasks,

types of errors and their frequencies, learning rates, and the

like must be based on tasks that all compared interfaces a l l o w

users to perform.

T h e collection and analysis of data will be provided b y the

PC/PIPE evaluation component. At interface execution cime, a

time-stamped log of interaction events will be created. F r o m this

log, a n interface developer/evaluator will 'be able to extract

human performance data indicating "ease of learning" and "ease of

use" of the interface. Viewing these criteria as contributing to

the effectiveness of a n interface is consistent with w o r k

performed by others in interface evaluation [LIND8S, REIS84,

GOOD82, ROBE831.

--t

Within these contexts, "ease of learning" is defined as the

amount of training time required of m e m b e r s of the u s e r comnunity

in learning the user interface to reach an established

performance criteria (to be defined in terms o f speed of usage

and number of user errors made), and "ease of use" is defined as

the amount of interactive time needed with a user interface (once

learned) in order to perform success full^ a given set of tasks.

4 8

W e c a n classify factors contributing t o the ease o f learning

a user interface into properties associated with the individual

user and properties independent o f the user. Properties

associated with the individual user are:

(1) Similarity o f the learned interface to other known

interfaces; and

(2) Retention of similar interfaces.

F o r each interface component, there is a positive or n e g a t i p

learning influence determined by the similarity to o r difference

f r o m interface components that the user has previously learned.

T h e degree of retention measures the effect that past exposure to

other interfaces has on learning a n e w interface.

Properties associated with the user interface are:

(1) Availability of a complete and accurate user’s manual that

a i d s in accessing the system;

(2) Existence of online assistance conmands that increase the

user’s productivity;

(3) Existence o f diagnostic messages that h e l p in error

recovery;

49

(4) Existence of prompting messages that aid in reducing the

number of input errors;

(5) Syntactic homogeneity of the command language;

(6) Semantic homogeneity of the comnand language;

(7) Use of abbreviations allowed;

(8) Easy to remember comnand names and abbreviations; and

(9) Complexity of the interface.

Complexity o f the interface is a major variable a s s o c i a t M

with learning of a n e w interface. To determine the learnability

o f a n interface, w e need to objectively measure its complexity.

T h e complexity factor offers the greatest potential for

developing predictive measures of usability [REIS83]. O n e

measure o f interface complexity is the number of distinct

comnands provided by a n interface. An obvious hypothesis to

consider i s that the interface with fewer conmands should be

faster to learn [HALS77, ROBE831. The point missed by this

hypothesis is that comnands are not useful in isolation; rather

they are used in the context of methods or procedures to
\

accomplish given tasks. T h e other hypothesis is that learning is

related to the procedural complexity of a comnand language. O n e

m e t h o d to approximate the procedural complexity of a n interface

is to compute the average number of steps in the method for

accomplishing a representative set of tasks, such as running a

5 0

benchmark m 8 0 , CARD , ROBE831. T h e Keystroke-Level -del

[CARD801 provides a simple unamabiguous set of steps to count

physical operations. However, the length of a method in physical

operations can be a misleading indicator. For example, a method

requiring a user to type "select" followed by return is not three

times m o r e complex than an abbreviation of the comnand requiring

the user to type only "se". W e can see that procedural

complexity has m o r e to do with mental "chunking" [DAVI84] of

physical steps into coherent fragments than the physical steps

themselves. This notion of procedural complexity as determined by

mentally defined chunks is a n instance of the " z e r o t h - o r d w

theory of learning" [CARD831 w h i c h states that learning time is

proportional to the number of chunks of information that must be

learned. T o m a k e this theory operational, the evaluator must be

able to specify what the chunks are.

3.4.3 Eactors affect U E a s c p f U S G I

In a manner similar to the factors contributing to ease of I

learning, factors contributing to the ease of use of a user

interface are classified into properties associated with the

individual user and properties associated with the user

interface. Properties associated with the user are: I

(1) User's past experience with the interface;

(2) User's ability to recall how to use the interface;

5 1

(3) Frequedcg of use o f the interface; and

(4) User's evaluation of his past experience with the interface.

Properties associated with the user interface are:

(1) Tolerance of user input errors such as minor spelling or

typographical errors w h i c h can be recognized as such;

(2) Cancellation of previous input so as to restart f r o m a

designated point in dialogues;

(3) Existence of meaningful diagnostics to aid the user in error
*

recovery;

(4) Existence of meaningful prompting messages to aid the user

in reducing user input errors;

(5) N u m b e r of steps required to correct an error;

(6) U s e of default options to reduce user response time;

(7) Use of function keys to reduce the number of keystrokes;

(8) Response time below a pre-specified o r expected limit;

(9) Variations in system response time for equivalent tasks;

(1 0) Availability of abbreviations for comnand names;

(11) N u m b e r of steps required to accomplish a t a s k using the

interface; and

5 2

(12) Complexity of the Eser interface as discussed in Section

3.4.2.

"ko types of data measures are defined here. A r a w data

measure and a generated data measure [DCMI78, BORM78, MICH811. A

r a w data m e a s u r e is defined as a data item obtained directly f r o m

a m o n i t o r base. A generated measure is defined as a data measure

w h i c h is generated in some manner, rather than being coll'ected

directly b y a monitor. Generated data measures can be either

first order generated measures o r second order generat4d

measures. A first order generated measure is a data i t e m w h i c h is

constructed via computations and/or manipulations performed on

one o r m o r e r a w m o n i t o r data items. A second order generated

m e a s u r e is a data item which is constructed via computations

and/or manipulations performed on first order generated measures

and/or second order generated measures.

T h e identification of variables applicable to user interface

evaluation i t of prime importance. T h e general categories of

potential data measures w h i c h are relevant to this study are:

1. Interface usage profile variables;

2. Us e r error and error recovery variables; and

3. U s e r success and user satisfaction variables.

53

Within each category, generic variables will be identified

that d o not depend upon any particular user interface or

information system, but rather are applicable across a wide range

o f user interfaces and information systems. T h e measures

computed by the PC/PIPE will be flexible and extension facilities

wi 1 1 be provided w h i c h wi 1 1 a l l o w a n interface

experimenter/developer to specify procedures for computing

m e a s u r e s w h i c h are not already provided by the system.

3.5 Sumaarvnf-MtthodolaPa

+
This section surmnarizes the proposed methodology. The first

m a j o r component of the methodology is that a user interface

should be separated as m u c h as possible f r o m the rest of a

system. Within this context, the user interface is treated as a

virtual machine and its layers are described in Section 3.1.

T h e second m a j o r component is a technique that allows the

interface designer to describe and organize the user interaction

sequences. This technique should satisfy the criteria of

formality, constructibility, comprehensibility, flexibilty,

portability, executability, and completeness, as described in

S e c t i o n 3.2.1. Based on these criteria, a m o d e l of user system

interaction i s described in Section 3.2.2. T h e user system

interactions are viewed a s dialogues between two parties. These

dialogues are represented as a sequence o f basic interaction

events. The definition o f a user interface is m a d e up of the

54

event definitions and transition controls. T h e transition

controls a l l o w the selection of the next event based on the

structured programning control primitives (sequence, case,

do-while). I t is shown that, using this model, various types of

interfaces could be designed and implemented to accomodate

various categories of users.

T h e implementation methodology for the proposed interaction

m o d e l is discussed in Section 3.3. The distinction between the

event descriptions w h i c h contain the dialogue logic, and the

actual information about text, processing definition, checks,

etc., provides the designer with the rapid prototyping

capability.

+

The third major component of the methodology is to provide

the interface developers with a s e t o f tools for monitoring and

evaluation of their designed user interfaces. Section 3.4

addresses this component. A generalized evaluation methodology

is presented in Section 3 . 4 . 1 , and various evaluative factors and

m e t r i c s are presented in Sections 3.4.2 through 3.4.4.

4 . BAQCGROUND AM) STATE-OF-THE-ART

O v e r the past decade, w e have heard m u c h lore about what

makes information systems easy to use, and about pros and cons of

various interaction devices and techniques. There have been a f e w

attempts to sunmarize, in a structured way, the design philosophy

and accumulated knowledge a n d experience [M)RA8lb, -83 ,

REIS83, BORG841. T h i s chapter suuxnarizes studies and research

efforts related to user/system interface issues. Section 4.1

overviews research performed on users o f information systems.

Section 4.2 provides a survey o f specification techniques used

f o r the design of user interfaces. Section 4.3 provides a n

overview of analytical tools developed or being developed for the

evaluation of user interfaces. W o r k addressing users’ conceptual

m o d e l s a n d mental m o d e l s is described in Section 4.4 and,

finally, Section 4.5 provides a n overview of research activities

addressing the design a n d management of user interfaces.

+

User research in computer science is still in its infancy

[BORG84]. Statements about users and their behavior have

typically been by-products of research on library users. In

gene’ral, ideas about the characteristics o f computer users d o not

come f r o m dedicated research but f r o m designers’ personal

56

experiences and beliefs [DAGW83].

W r a n [MIRA8Ib] describes four approaches to “an applied

psychology” of the user, w h i c h lie along a continuum f r o m

empirical to theoretical. These are: 1) the experimental

approach, 2) the features approach, 3) the factors approach, a n d I

4) the calculational approach.

In the pure experimental approach, methods of experimental

psychology are used to evaluate the specific system under

development. No attempt is m a d e to develop any theory or d e e p

understanding that might help in the design of the next systeg.

T h e typical approach i s to construct a general interface

simulator. However, this simulator not help with another expense

o f this approach, namely, that i t requires multiple subjects a n d

m u l t i p l e trials to get reliable measures.

T h e features approach attempts to discover the general I

I

design features of systems that affect user behavior. It is ~

expected that these general design features can then be used to I

formulate design guidelines. T h e factors that affect u s e r

behavior are quite complex and interact extensively with o n e I

another. T h i s approach i s clearly better than the experimental
I

approach, but i t still has m a j o r shortcomning. I t , t o o , leads to

a repeated focus on low-level issues, such as selection of an

input device, but for different reasons. Further, b y

concentrating on features rather than principles, w e o f t e n

I

57

perform research that has limited applicability to the next

generation o f technology.

In the factors approach, a researcher attempts to determine

a pattern of psychological factors that are relevant to user

behavior, perhaps through mutivariate statistical analysis

techniques. Williges and Williges [WILS82] sh o w application of

this approach by using polynomial regression and response surface

methods to study the patterns of effects of system response time,

display rate, keyboard echo rate, and keyboard buffer length on

user performance in a personnel records task.
*

T h e calculational approach involves the development of

explicit information-processing models of user behavior in

particular tasks. T h e Keystroke-Level M o d e l [CARD80, 0 8 3 1 is

a n information-processing model that predicts the error-free

performance times of expert users employing interactive comnand

languages.

Pcnniman and Dominick [PENN80] reviewed the literature to

identify data regarding user's characteristics and information

use patterns. T h e y found only a minimal number of studies

containing hard data and even fewer containing any kind o f

behavioral measures.

Although one should generally be skeptical of questionnaires

and interview studies, these are often the only direct measures

available to reseachers. Dzida, et al. EDZID78) provide useful

58

insights into user perceived problems of usability. Based on a

factor analysis of questionnaire responses f r o m a reasonably

large group of users, the authors found seven m a j o r usability

factors: 1) self-descriptiveness of the system, 2) user control,

3) ease of learning, 4) problem-adequate functionality, 5)

correspondence with user's expectations, 6) flexibility in task

handling, and 7) tolerance for user errors.

E a s o n [EASO80] argues that the flexibility o f task handling

is the most fundamental type of flexibility. H e distinguishes

"closed" tasks f r o m "open" tasks. A closed task is "one in wh i c h

the alternative states of input and output variables are well
+

understood and will fall within a predictable range" [EASOSO].

T h e properties of a n o p e n task may vary greatly, often a s a

result o f influences outside the user's control. Eason contends

that w e have not been very successful in designing systems to

support o p e n tasks. H e also notes that dialogue needs vary

strongly with the degree of openness and the frequency of

occurrence of the task. Open, infrequent tasks require a

particularly flexible, adaptive user interface. With a different

orientation, Nickerson [NICK811 presents a list of user

frustrations based on informal interviews: wrong functionality,

limited accessibility to the system, start-stop hassle (l o g o d o f f

protocols etc.), system dynamics and response time, work-session

interrupts (system crashes, etc.), training and user aids,

documentation, comnand languages, consistency of system behavior,

5 9

and the user’s conceptualization of the system.

T h e problems associated with poor user interface design are

w i d e l y recognized and discussed in the literature. Hayes, et al.

[HAYE811 present a fairly detailed, realistic example of dialogue

with a mail system. In this example, many of the difficulties

arise f r o m the extreme literalness and lack of flexibility of the

user interface. T h e y suggest a particular type of dialogue

front-end, oriented primarily toward comnand language dialogue,

as a possible solution.

M u c h of the w o r k in this area has been concerned with static

programning languages rather than interactive languages

[JACO83a]. In a static language, an entire text is presented as

input before any processing begins or any output is produced;

then, all the outputs are produced together. Processing of the

text is affected little, if any, by previous inputs. W h i l e in the

interactive language, the input can be described a s a series of

brief texts, w h e r e the processing of current input generally

depends on previous inputs. Equivalently, one long text is input

a n d the computer system takes actions and produces outputs at

various points during the input, resulting in a dialogue. M o s t

specifications for both static and interactive languages have

been based on one of two formal models: Backus-Naur Form (BNF) or

state transition diagrams. E a c h of these methods provides a

60

syntax for describing legal streams of user inputs. In order to

specify user interfaces, the techniques must be modified to

describe the system actions as w e l l and their sequence w i t h

respect to the user input.

. . 4.2.1 S t a t e u s i t l o p

As early as 1969, Parnas [PARI4691 suggested state transition

diagrams to describe user interfaces for interactive systems. H e

differentiates "terminal state" f r o m "complete state" i n a w a y

analogous to the separation of syntax f r o m semantics in other

specifications. H i s paper contains some simple examples and do-

not address h o w the scheme w o u l d w o r k for more complex real w o r l d

systems. A transition diagram has a labeled node w h i c h indicates

a n initial state, possibly multiple terminal states, and possibly

multiple output states. T h e directed arcs are labeled with a

possible input string followed by the system response to that

string. Folley and W a l l a c e [FOLE74] also advocate the use of a

state diagram to represent the user interface. T h e y too do not

examine the problems of complex real-world systems. F e g o c k

[FEY0771 described transition diagrams in the context of computer

assisted instruction and help systems. Wasserman and Stinson

[WASS79], like Feyock, emphasized that the system response on the

arc may involve the invocation of another transition diagram and

are m o r e attentive to the details of interfacing with a

procedural language to carry out computations.

6 1

T h e MLMPS interactive compater language specification uses

nonterminal s p b o l r extensively and gives a precise deterministic

procedure for interpreting diagrams containing t h e m [MMP77]. The

specification is noteworhty in that the actions associated w i t h

its transition comprise a complete specification of the semantics

of the MUMPS language.

Singer [SING791 uses state diagrams in the context of an

interactive H e l p system for Pascal. His notation is m o r e complex

and difficult to understand. I t uses separate diagrams for

nonterminal symbols and a global data structure w h i c h can be set

by arbitrary semantic domain actions. By examining the v a l u e s 7 n
4

this data structures, and not by directly looking at input

tokens, transitions c a n be selected. Hence, a transition

involving receipt of a particular token is described by two

transitions in his notation - one to read i t into the data

structure and one to test the value just stored.

In the Taxis system [MYLOSO, BARRSJ], the overall

organization and structure of dialogue and process control f o r a

particular interactive information system is achieved using

“scripts”. A script c a n be thought of as a known plan to

accomplish some goal. E a c h script is represented using a

transition net w h i c h is based on a simplified version of Zisman’s

augmented Petri nets [Z I M 7] . Scripts provide facilities for

modeling decision making, concurrency, and synchronization,

rather than representing user interfaces.

6 2

Ling [LING821 describes designing data entry programs using

state diagrams as a c0-n model. E a c h data entry program

supports one type of transaction. A compact model w a s obtained by

limiting the set of states to those minimally required for

representing the interface conditions. There are two types of

conditions: those w h i c h occur after the user enters a field and

those w h i c h occur w h e n the user attempts to output a transaction.

These observation lead to model of 20 states: one initial state,

one final state, 8 states representing the logic for a

generalized data field, and 10 states representing the end of

transaction logic. T h e state diagrams w e r e checked visua1)y

against the specified program behavior. A m o r e rigorous approach

to verify the logic w a s taken to construct a formal correctness

proof for the state diagrams.

IBM’s chief scientist, Dr. Branscomb [BRAN84], also

advocates that one should define the interface as a set of states

and transitions. T o a great extent, the I B M A u d i o Distribution

S y s t e m [GOUL84] follows the priniciples advocated by Branscomb.

T h e use of state diagrams does not provide a totally formal

description of the semantics of state transitions and usually

does not include a specification of the screen layout. In

addition, the specification is given by using a concrete syntax

w h i c h requires the definition of many details not relevant in a n

early or prototyping design phase.

63

Formal languages and automata have long been a part of user

interface design. One of the earliest attempt w a s Newman's

Reaction Handler ["i8]. M o r e recently, a great deal of w o r k

has been performed in using formal languages to characterize and

analyze user interfaces [BLES82, WASS81, REIS81, REIS841.

Pesiner [REISSl] provides an example of h o w BNF can be used

to describe a user interface. H e r approach does leave out the

semantics of the user interface - the system actions and

responses. She describes the -action languages" for two versiogs

of a n interactive graphics system intended for use by

nonprogramners. She then shows h o w these languages can be

described in terms of a production rule notation. Particular

emphasis is given to actions the user has to learn and remember

(i.e., cognitive factors). She then presents predictions about

user performance based on the formal description and exploratory

results of testing some of the predictions.

Shneiderman [S"E82] proposes a modified f o r m of BNF in

w h i c h each nonterminal symbol may be associated with either the

computer or the user. The'human-related BNF granxnar is used to

parse the input while the computer-related BNF gramnar is used to

generate the output. These gr-rs contain labeled nonterminals

t o indicate the party that produces a terminal string. I

64

In academia and in industrial research, some researchers

have begun to develop analytical tools to determine the ease of

use o f user interfaces. An analytical tool does not measure the

user behavior directly, but i t predicts what would happen if

users w e r e interacting with a system. T h i s section describes

some analytical tools that have been or are being developed. T h e

studies to be disussed have a number of different goals. M o s t are

attempts to aid system design. N o n e of the tools have as yet

been tested for ease of use. -
h b l e y , Lan, Leinbaugh and N a g y [EMBL78b] propose a model to

compare program editors f r o m the end user's point of view. In

their model, the total time to perform some "unit" task consists

o f two main factors: the time to key-in the comnands and another

factor. T h e other factor consists of "think time" and computer

response time. The "think time" is the time for the user to

decide what to do next. The time to k e y - i n comnands is taken as

the number of keystrokes times the average time per keystroke.

T h e time for a task is simply:

T.task = m*T.c + n*T.k

w h e r e m is the number of conmand response pairs

n is the number of keystrokes

T.c i s the think time per comnand and associated computer

re sponse

T.k i s the time per keystroke

65

Using parameters of T.c = 5 seconds and T.k = 112 second, the

authors found statistically significant differences between two

editors.

C a r d and M o r a n [CARD801 vi e w their keystroke level model as

a design tool. The model is intended to predict task time, for

expert users, on routine tasks. The central idea behind the model

is that the time for an expert to d o a task on a n interactive

s y s t e m i s determined by the time i t takes to perform the

keystrokes. T h e precise method (sequence of comnands) must be

specified and no errors are expected. Like the Ehbley model, the

keystroke-level model counts keystrokes. However, the k e g s t r o G

m o d e l is very clearly and explicitly a model of the user. I t

contains four physical-motor operators: K (keystroking), P

(pointing as with mouse), H (homing, moving the hands to the

appropriate physical device), and D (drawing straight lines

segments, using the mouse). In addition, there is one mental

operator M for Mental Preparation (e.g., deciding w h i c h conmand

to invoke). There i s also a n R operator for system response time.

T h e time to execute a task is the s u m of the times for the

r e 1 e v a n t par ame t e r I.

T h e Keystroke-Level model is severely restricted in the

sense that the user must be a n expert; the task must be a routine

unit task; the method must be specified in detail; and the

performance must be error free. Additionally, i t predicts only

one aspect of the total user-computer interaction, namely the

66

time to perform a task.

T h e w o r k of Reisner [BEIS811 is a n attempt to provide a

predictive tool to compare alternative designs for ease of use,

and to identify design choices w h i c h would cause users to m a k e

mistakes. H e r action language model views user actions at a n

input terminal (keying, moving a joystick, pressing a button) as

a language. I t u s e s a production rule notation. + I k o criteria

w e r e used to analyze designs in these gramnars:

(1) length of sentences to be compared, and

(2) the number of extra rules in the gramnar.

T h e latter w a s taken as a n indicator of inconsistency in &e

language. In addition to the above two criteria, other

possibilities were noted but w e r e not explored. These included

the number of different terminal symbols (words), the number of

alterations in hand or eye movement, the total number o f rules

needed to describe some subset of the language, and other

linguistic measures of sentence complexity.

Application of cognitive psychology has been increasingly

useful in the area of software development and especially in the

design and evaluation of user interfaces. However, confusion in

terminology runs rampant throughout the literature in this area.

W e provide here some definitions (due to [BORG84a], [NORM82],

[KIER82]):

I

I

67

* Cognitive model - A m o d e l , typically built by a cognitive

psychologist, that attempts to describe the mental

processes by which humans perform some task. The usual

purpose of such a model i s to advance our understanding

of human behavior.

* U s e r conceptual model - A m o d e l , typically built by a

designer of a system to provide the user a n appropriate

representation of the system (appropriate in the sense of

being accurate, consistent and complete). T h i s model i s

not necessarily the same as actual system behavior.
+-

* M e n t a l M o d e l - A m o d e l , evolving in the m i n d of a user,

representing the structure and internal relationships of

a system, as the user i s learning and interacting with

the system. This is not a formal m o d e l and no one

"builds" it. M e n t a l m o d el can be analogical, incomplete,

and sometimes very fragmentary with respect to their

understanding of how something works.

McukLL 4.4.1 C 6 p n l t l V C
. .

Notable contributions in this area have been m a d e by Stu

Card and T o m M o r a n in collaboration with Allen Newel1 [0 8 3 1 .

Their w o r k involves several different models with different

purposes and possible areas of application. T h e M o d e l Human

Processor depicts certain basic processes (e.g., perceptual,

68

cognitive, motor, and storage o f information in percsptual and

long t e r m m e m o r y) as occurring in discrete cycles. Theae cycles

take time and the time differs for the various processes. Three

versions of the model are defined: one in w h i c h all the

parameters listed are set to give the worst performance

(Slowman), one in w h i c h they are set to give the best performance

(Fastman), and one set for a nominal performance (Middleman).

Examples are given of the model's use to describe several types

of tasks: perception, motor skill, simple decisions, learning and

retrieval, and problem solving. Clearly, this model is too

simplified to do justice to the richness and subtlety of tse

human mind, but i t does help to understand, predict, and even to

ca 1 cula t e human performance relevant to human-computer

interaction.

Another model, called the G(MS M o d e l , attempts to model

human p r o b l e m solving behavior in terms of goals, operators,

methods, and selection rules. I t has been s'pecifically applied

to the modeling of the behavior of expert users of a text-editing

system. T h e GCn4S approach is highly task-specific and involves a

considerable research investment. T h e model requires information

about expert performance of a task. Goals must be specified w h i c h

define states of affairs to be evaluated. Perceptual, motor, and

cognitive acts are described as operators. Methods need to be

established to accomplish a goal. Selection rules are then

applied to select a method. T h e cost of obtaining the estimates

6 9

of all different operators and selectiGn ruler increases at a

finer grain of analysis, because m o r e data are required for a

given level of robustness as the observation and measurement

problems increase at the lower level. Kieras and Polson [KIER82]

have proposed a n extension in w h i c h the user's task

representation is distinguished f r o m the user's device

representation. The mapping of user intention to specific

actions in w h i c h the user manipulates a device is defined in

terms o f production rules. They propose that the complexity of a

particular system, f r o m the user's perspective, might be

measurable by measuring the depth of the goal hierarchy and tu
number of production rules in the model.

4.2.2 Us e r U n ~ M o d e l s

Recently, the idea of a "user conceptual model" of a system

has begun to be viewed as a formal entity for designing user

interfaces.

Several researchers [MIRA8la, MAYE81, R U M S 1 , GE"82,

FOSSSZ] have found that people can learn and apply conceptual

models, though these conclusions are not without some constraints

and limitations.

M a y e r [MAYESl], in a series of studies, has shown that a

concrete conceptual model aids in learning the BASIC programning

language. T h e model appears to serve as a n "advance organizer"

for the material to be learned, but i t w o r k s only if the model is

7 0

presented before the specifics of the material, not after.

4.2.3 -Models

M u c h of the w o r k on mental models and interactive systems

has stemned f r o m the premise that the user possesses a mental

m o d e l of the system and has explored the characteristics of that

mental model [BORG84]. The copmon approach is t o begin without

this assumption and attempt to show the existence of the model.

&ran [M)RA8la] defines the user interface a s consisting of

"those aspects of the system that the user comes in contact with

- physically, perceptually and conceptually." H e concludes ta+t

"to design the user interface of a system is to design the user

model." I t is a dominant opinion among many researchers that the

s y s t e m design imposes the user model ([GAIN81], [MIRA8la],

[NORM81], [YOUN81]).

T h e majority of the w o r k in user models deals with the

application of text editors [DOUG82, FOSS82, HALA82, LEWI821. I t

w a s found that subjects induced a typewriter model for the text

editor even though such a model had not been explicitly provided.

T h e patterns of errors and types of misconceptions about system

behavior w e r e consonant with the typewriter model in both

studies. M o r a n [MlRAIJla], Norman [NORM81], and Young [YOUN81]

distinguish between giving the user a conceptual model and the

s y s t e m w h i c h c a n be assimilated and forcing the user to infer or

induce the s y s t e m m o d e l . In general, i t is easier to assimilate a

7 1

model than to induce one. b r a n [MIRA8la], Normaa [NORvl$l], and

Rumelhart [B W I I l] agree on the importance o f providing an

explicit and consistent model to the user.

Carroll and Thomas [CARR82] claimed that the activity of

learning to use a computer system is structured by metaphoric

comparisons. F o r example, the metaphore "a text editor is a

typewriter" could be spontaneously referred to during the early

learning period about text processors. Halasz and M o r a n [HALA821

contrast conceptual models with metaphoric, or analogical,

models. By the latter, they m e a n suggestive but typically

incomplete descriptions referring to near-neighbor domains, o r 3 0

compositions of these. In contrast, their v i e w of a conceptual

m o d e l i s intended to cover highly accurate and arbitrarily

complete descriptions (the level of detail m a t c h e s the needs of

the target user) usually in some abstract format, like a

flow-chart or a graph. They object to using a single analogical

mapping to a computer system. They propose constructing a n

abstract model based on system behavior. T h e i r views are

supported by d u Boulay, O'Shea and Monk [DUBO81], M o r a n

[M)RA8la], and Young [YOUN81]. They also endorse the use of

metaphors to explain smaller units of the system's operation.

Gilfoil [GILF82] studied user's cognitive schema as they

learned to use a text editing system. They w e r e given a choice of

a menu-driven or comnand driven interface and the option to

switch between them. All users began with the menu-driven style

7 2

and gradually switched over as they became m o r e skilled. As they

began to switch over, the time per task dropped and the number of

semantic errors and the frequency of asking for help dropped

dramnatically. Gilfoil concludes that user systematically develop

a cognitive structure for the task environment. This finding

follows other cognitive research (e. 8.. [MAYE81, S W 8 0 ,

QIAs731).

T h e recent upsurge in human/computer interaction research

has brought a n interest in developing tools for the design and

implementation o f user interfaces. M o s t of these tools have been

developed to support graphical interaction and are applicable in

graphics environments. T h e y could well be considered as graphics

utilities. T h i s section surveys some of the recent developments

in the user interface management area.

O l s o n [OLS083a] describes research into the automatic

generation of interactive graphical systems to facilitate faster

and cheaper generation of interactive user interfaces. T h i s w o r k

has not progressed beyond the design stage. H e observed that i t

is the d e s i gn aspect of program creation w h i c h is suited to

automatic program generation. T h i s is because of the high cost

in time and effort of hand-coding and the increased reliability

o f automatically generated software. H e uses Pascal procedure

definitions for the characterization of interactive conmands in

73

the application program.

K a s i k [U S 1 8 2 1 describes a system called TIGER w h i c h taker

care of the bookkeeping associated with screen layout, interrupt

handling and the definition of interactive dialogue sequences.

T h e system has at its core the language TICCL, w h i c h permits a n

applications programner to concentrate on the logical functions

w h i c h the programner wishes to perform rather than the low-level

physical steps w h i c h must be taken to accomplish the task. TICCL

can be used to describe algorithms w h i c h combine graphical

primitives in response to user interactions as w e l l as to define

user interaction sequences. t

To the extent TICCL i s used for constructing graphical I

primitives for user interactions, i t i s m o r e advanced than the

table driven m e n u system of the User Interface Management System

(UIMS) [BUXT83a]. UIMT hag two m e n u components. T h e first

component is a set of tools to support the design and

implementation of interactive graphical programs. The second

component is a runtime support package which handles interactions

between the system and the user (things such a s hit detection,

event detection, screen update and procedure invocation). T h e

design/implementation tool is a preprocessor, called MENULAY

w h i c h permits the application programner to use interactive

graphical techniques and to design graphics menus. T h e output of I

this preprocessor is high level code w h i c h can be compiled with I

application specific routines. User interactions with the

I

74

resulting executable w d u l e are then handled by the runtime

support package. Currently, no evaluation of the user interface

is supported. T h e applicability of the current implementation of

the preprocessor is restricted to menu based interaction.

FLAIR (Functional Language Articulated Interactive

Resources) 1-82] is a dialogue design tool w h i c h enables a

system designer to construct graphically a user dialogue for a n

application program. I t i s largely driven by voice input and

incorporates text picture construction and editing (at the

graphical primitive level) as well as dynamic frame layout.

FLAIR i s a language and package unto itself with no apparent

"hooks" into other programming languages. As with UAS, FLAIR

does not have any validation facility or evaluation capacity

built into the system.

+-

T h e design of COUSIN (O o p e r a t i v e User INterface) at

Carnegie M e l l o n [BALL821 is based on the notion of a n

e n v i r o nme n t . COUSIN ac t s as an interactive "environment

modifier" through w h i c h the user can change the value of any slot

in a n environment. An environment i s a set of named, typed slots

w h i c h act as communication variables between a n application

system and its users; the environment is used to specify a

comnand and provide the parameters w h i c h control the operation of

the application system.

75

In conclusion, none of the above described systems provides

support for monitoring facilities. T h e proposed system for this

study differs f r o m all other systems, whether at the design or

production stage, because of its proposed built-in monitoring and

evaluation facilities not only for the system itself but also for

the user interface generated by the use of this system.

+

S. PR(ITOc0LS FOR INTERFACE PRonrryPIKi AND EVALUATION S Y S m

A range of tools are needed for the development and

administration of user interfaces for interactive information

systems. A collection of such tools i s proposed here as a

Protocols for Interface Prototyping and Evaluation (PIPE) system.

T h e following sections describe the role of the PIPE, enumerate

some o f the benefits expected f r o m this approach, provide a n

overview of the composition of the PIPE, and investigate some

implications o f the PIPE for information systems. -t

T h e PIPE will mediate the interaction between a user and a n

application, satisfying user requests for application actions,

and application requests for data or comnands f r o m the user. I t

will accept as input a dialogue specification, describing the

detailed structure of the interaction. This specification is

distinct f r o m any application program, thus allowing for the

application programmer’s problem-specific skills to be

concentrated on application issues and freed f r o m any detailed

concern with managing the f l o w of user action and responses. At

the same time, a dialogue specification provides for the human

factors skill of a user interface designer to be applied to

improving the quality of the interaction, without detailed

7 6

77

concern for the techniques oied to solve the application problem.

Here, a n analogy is drawn between the PIPE and a D a t a Base

Management S y s t e m (DIMS). The DBMS frees the application

programner f r o m detailed concern w i t h the management of physical

data storage and retrieval, and allows for the specific skills of

the data base application programner to be applied to the

specifics o f the application.

T h e building of the user interface of a n information system

using PIPE will provide the following advantages: I

1. T h e knowledge required to construct a good interface f s

diffuse, uncertain, and hard to acquire [TH(M83]. Only

specialist user interface designers are likely to be able to

devote enough effort to acquire such knowledge. T h e PIPE can

be a n essential tool for exploiting their skills, since i t

improves the efficiency with w h i c h these skills c a n be

applied.

2. W i t h o u t a sound methodology, each user interface design is

likely to proceed in a time consuming and ad hoc fashion.

T h e PIPE should accelerate the design process, permitting a

m u c h w i d e r range o f alternatives to be examined.

3. Prototyping via the PIPE should represent a valuable m e a n s

o f liaison with prospective users.

7 8

4. Experiments involving rc-implementing entire applications

are prohibitively expensive. T h e ease with which user

interfaces can be revised using the PIPE should m a k e

realistic and cost-effective experimentation possible. I t

a l s o should provide a basis for instrumenting user

interfaces to gather information, for example on the

evolution of patterns of use.

5. T h e PIPE should provide the capability to adapt to different

user profiles.

6. T h e s y s t e m should make it easier to integrate n e w

application functions into the user interface, and assist in

ensuring a uniform interface as n e w applications are

developed.

7. T h e s y s t e m should provide for applications to be portable,

w h i l e allowing a resulting user interface to be tailored to

a particular installation, while preserving user interface

quality.

T h i s section is devoted to a brief overview of the proposed

system, PIPE, to be developed on an IavI Personal Computer using

the C language. T h e PIPE will be composed of two main

components, the User Interface D e s i g n Subsystem (UIDS) and the

U s e r Interface Execution Subsystem (UIES). T h e U I D S supports the

7 9

user interface designer. I t will provide tools for describing

display layouts, dialogue structures, and interactions with

application programs. T h e UIDS will a l l o w the generation of a

detailed specification of the user interface that can

automatically be converted into the C language code required to

implement the specification. T h e UIES will support the execution

of the user interface generated by an interface designer using

the UIDS. Following is a description of these components of PIPE.

T h i s subsystem will provide support to the user interface

designer at three different levels of the user interface:

Interactive Level, Dialogue M a n a g e r Level, and Application

Interface Level.

5.2.1.1 Interact i v c Level

T h e design of the Interactive Level will be supported by the

following three modules:

1. Screen Layoat Specification Uodule. The designer will

be able to name a screen, specify background color,

size o f the windows, border color, foreground color and

a n E v e n t - I D associated with the w i n d o w to indicate w h e n

the w i n d o w is to be displayed. A separate w i n d o w could

be defined for system prompts, user input, system

responses including system error messages and system

8 0

state. A m e n u can be associated with each of the

windows.

2. Interaction Technique Specification Module. T h e

designer will be able to associate a n interaction

technique with a window. H e will be able to select the

interaction technique from a library or construct his

own interaction technique.

3. Display Function Specification Module. T h e designer

will be able to specify the name of a display function

and a w i n d o w where the information will be displayed.

T h e major dialogue types supported w o u l d be: m e n u

selection, user initiated comnand language, function

keys with comnand language, form-filling, and question

and answer.

5.2.1.2 DialoPue Manapcr-

This level will allow the specification of event handlers.

All event descriptions will be stored in a data base and these

will be converted into a n executable form.

5.2.1.3 b n l i c a t i o n Intcrface Levcl

T h e designer will specify the descriptions o f all

application data structures and routines that are accessible to

the user interface. T h e description of application data

structures will include the type of information stored and how i t

8 1

is structured. T h e description of the application’s routines wi3l

include the name of the routine and the number and type of its

parameters. T h e description might also include the constraints on

the use of the routines besides pre-conditions and

post-conditions.

5.2.2 U s e r Jnterface Execut iQXL-lYLESl.

T h e UIES will be the central core of the PIPE. T h e

application software will interact with the UIES w h e n the

information system i s ’live’. T h e UIES supervises and implements

the interface specified in the Event Description Table,

essentially acting as a n interpreter for the events.

I
I

I

T h e UIES will be transparent to the user and will be I
I

composed of the following components: I

1. F e e d b a c k Generator. This component will generate appropriate

user feedback. Initially, i t will simply consult a standard

set of messages w h i c h will be customized to suit the

feedback required.

2. Adaptive Interface Handler. This component will control

adaptation of the dialogue. I t will simply check user input

and will honor a change of interface request by informing

other components of the UIES that the interface level h a s

been changed. Effectively, this will act as a filter in the

input stream.

I

I

8 2

3. Buffcred, 1/0 Handler. If the data required has already been

entered, the UIES will read this directly f r o m a n input

buffer. If this buffer is empty, then the user w i l l be

prompted for the input.

6 . SUMARY OF PROPOSED RESEARCH

Th i s chapter sunmllrizes the proposed research discussed in

previous chapters. The basic statement of the problem w a s

discussed in Section 1.1, w h i c h stated that the user interface is

often designed without serious considerations f o r the user on the

part of the designers. Reasons w e r e given for this problem. I t

w a s established that current computer science research is

lacking tools and methodologies for the effective design and

evaluation of user interfaces. There is a need to provide better

methodologies and tools for designing, implementing, maintaining,

and evaluating user interfaces for information systems. T h e

proposed research addresses this need.

T h e research objectives were first stated in general terms

in Section 2.1 and then refined into specific research objectives

in S e c t i o n 2.2. The m a j o r objectives of this research are: the

development o f a comprehensive, objective and generalizable

methodology for the design and evaluation of user interfaces for

interactive information systems; the development of equations

and/or analytical models to characterize user behavior and the

performance of a designed interface; the design of a prototype

system f o r the development and administration o f user interfaces;

and the design and use of controlled experiments to support the

research and test/validate the proposed methodology.

8 4

Th d m th dology w a s dis ussed in Chapter 3. Several

m a j o r concepts of design and evaluation of user interfaces were

explored. These concepts were integrated into a preliminary

methodology to achieve the desired objectives of this research. A

user interface i s treated as a virtual machine and its layers

w e r e described in Section 3.1. Section 3.2.1 established the

criteria for the evaluation of specification methods that

describe and organize the user interaction sequences.

A model of user system interaction w a s proposed in Section

3.2.2. In this model, "cornnand language" interactions are viewed

as dialogues between two parties. The dialogues are represented

as a sequence of basic interaction events. T h e entire event i s

viewed as a process m a d e up of four main phases: system prompt,

user input, system action and response, and transition control.

T h e transition control allows the selection o f the next event

based on the familiar structured programming control primitives

(sequence, case, do-while). I t w a s shown that, using this model,

various modes of interactions could be defined and implemented.

Section 3.3 discussed the implementation methodology for the

proposed interaction model. The dialogue logic is separated f r o m

the actual text of messages between the user and the system. This

separation allows for quick skeletal implementation w h i c h can be

augmented later.

8 5

A general evaluation methodology w a s presented in Section

3.4. T h e proposed methodology will all o w interface developers to

evaluate user interfaces f r o m the viewpoint of the performance of

their users. A software monitor will automatically be generated

and incorporated into a designed interface. F r o m the data

collected by the monitor, an interface developer/evaluator will

be able to extract human performance data indicating “ease of

learning” and “ease of use” of the interface.

Chapter 4 sumnarized current research studies relevant to

user interface issues. A survey of user interface management

systems w a s presented and i t w a s pointed out that the evaluation

component is virtually non-existent among these systems. T h e

proposed s y s t e m for this research differs f r o m all other systems,

because o f its proposed built-in monitoring and evaluation

facilities, not only for the system itself, but also for the user

interface generated by the use of this system.

Finally, Chapter 5 provided a brief overview of the system,

PIPE (Protocols for Interface Prototyping and Evaluation), being

developed in support of this proposed research.

APPE82 Apperley, M. D. and Spence, R., "Hierarchical Dialogue
Sys t ems, " Structures in Interactive Comp u t e r

Software-Pract icc 4pd Eznerience 9 13, 1983, pp. 777-790.

A m 8 4 Atwood, M. E., "A Report on the Vail Workshop on Human
Factors in Computer Systems," - m u t e r Grabhlcs * p p d

licati-, December 1984, pp. 48-66.

BAIL83 Baily, J. E. and Pearson, S. W., "Development of a Tool
for Measuring and Analyzing Computer User Satisfaction," - Science , 29 (61, 1983, pp. 519-529.

BALL82 Ball, E. and Hayes, P., "A Test-Bed for User Interface
Designs," Proceed- - H J u x u A F a c t o r s i n ~ ~ , S v s t e l a s ,
Gaithersburg, m., March 15-17, 1982, pp. 85-88.

,
BARB83 Barber, R. E. and Lucas, H. C., "System Response Time

Productivity and Job Satisfaction,"
i c a t i o u P f l k A < M , 26 (111, November 1983, pp.

Ope r a t o r

972-986.

BARN81 Barnard, P. J., Hamnond, N. V., hhrton, J., Long, J., and
Clark, I. A., "Consistency and Compatibility in Human

Studies, 15, 1981, pp. 87-137.
Computer Dialog," h t e r n a t i o d a b u u n a L d -

BARN82 Barnard, P., Hsmnnnd, N., MacLean, A., and Morton, J.,
"Learning and Remembering Interactive Corunands,"

Gaithersburg, m., March 15-17, 1982, pp. 2-7.
P l ? H U n l a l - in Q U l l B n t e r , Svstems,

BARR81 Barron, J., Dial- andProcessD-m fpr Interactive

Dept. of Computer Science, University of Toronto,
Toronto, Canada, April 1981.

lnfalmation S_VSt- - -, Tech. Rep. CSRG-128,

BASS85 Bass, L. J., "An Approach to User Specification of
Interactive Display Interfaces," m a c t i q p g PP
Saftwart EnPineering , SE-11 (81, 1985, pp. 686-698.

BATC8l Batchelor, W. J. and Endicott, L. J., "An Experimental
System to Support a Very High Level User Interface,"
ProceedinPs. - AFIPSNationbL h n p n t e r -, 1981,
pp. 389-392.

86

87

BENB81 Benbarat, I., D e x t e r , A. S., and Maralis, P. S., "An
Experimental Study of the H u m a d C o m p u t e r Interface,"

c a t i o u p f a A C M , 24 (111, 1981, pp. 752-762.

BENB84 Benbasat, I. and W a n d , Y., "A Structured Appraoch to
Human-Computer Dialogues," termti- I

, 21, 1984, pp. 105-126.
D e s i gni ng
Journal pf b w k k h c h i u Studies

I

BLAC81 Black, J. B. and Sebrechts, M. M., "Facilitating
Human-Computer Comnunications,"
J s v c h o l w u i s t i c s , 2, 1981, pp. 149-177. I

BLAC82 Black, J. B. and M o r a n , T. +'., "Learning and Remembering

S v s t m , Gaithersburg, MI., M a r c h 15-17, 1982, pp. 8-11.
Comnand Names," P r o c e e w H u r a a n F a c t o r s i p c i l m u u L

BLEH8O Bleher, J. H., Caspers, P. G., Henn, H., a n d M a c r k e r , IC.,
"A Graphic Interactive Application Monitor," IBM S&uLec
JourllB1, 19 (3). 1980, pp. 382-402.

BLES82 Blcser, T. and Folcy. J. D., "Toward Specifying qnd
Human Factors of User-Computer

- H u m a n F a c t o r s i . n
Evaluating the
Interfaces," Proceedi-
S v s t w , Gaithersburg, Md., M a r c h 15-17, 1982, pp.
309-314.

B L W 2 Blum, B. I. and Houghton, R. C. Jr., "Rapid Prototyping
of Information Management System," SIGSOFT Softw-

i n e e r u N o t e s , 7 (5 1 , December 1982, pp. 35-38.

BOKESO Bo, Ketil, "Problems of the 80's in Man/Machine
Communication," in Guedj, R. A., tenHagen, P. J.,
Hopgood, F. R., Tucker, H. A., and DUCC, D. A., (Eds.),
MethodaloPv nf 1PteractioIL , North-Holland, Amsterdam,
1980, pp. 149-158.

BORG82 Borgman, C. L., "Mental Models: W a y s of Looking at a
System," = B u l l e t in, December 1982, pp. 38-39.

BORG84a Borgman, C. L., -&er 's MentalModelnfqpatiqll
trieval S p s t a Effects pp. -, Ph.D.

Dissertation, Stanford University, California, 1984,
378p.

BORG84b Borgman, C. L., "Psychological Research in Human-Computer
Interaction," Annual B e v i e w nf J&Qrmltipn S c i e n c e ppd
TCC-, 19, 1984, pp. 33-64. I

88

B O M 8 Borman, L. and nominiuk, W. D., Prafile EvaluatiplL
R c r c a r c h q p d M Q d e l l ing fpr SCiencL Information Spstwns. - A

, Final Report, NSF
l a g M X h DIlcd~ . - e f ~ G e n e r a l i z e d E v a 1 n a t i p n
U t h a d a l Q S X LQ Studv JnteractiM
DSI76-19481, Northwestern University, Evanston, Illinois,
June 1978, 158p.

BORU82 Borufka, H. G., tenHagen, P. J., "Dialogue Cells: A
Method for Defining Interactions," = m u t e r
apd APD1icatiopS 9 July 1982, pp. 25-32.

BRAN84 Branscomb, L. M. and Thomas, J. C., "Ease of Use: A
System Design Challenge," JJ&i S v s t a J o u r u , 2 (3).
1984, pp. 224-235.

B R m 3 Brown, P. J., "Error Messages. The Neglected Area of the
Man-Machine Interface?," e f t a e B L M , 26
(41, 1983, pp. 246-249.

BUXT83a Buxton, W., Lamb, M. R., Sherman, D., and Smith, K. C.,
"Towards a Comprehensive User Interface Management
System," w h i c g , 17 (31, July 1983, pp. 35-42.

BUXT83b Buxton, W., "Lexical and Pragmatic Considerations of
Input Structure," m u t e r w i c s , January 1983, pp.
31-37.

CARD80 Card, S. K. andMoran, T. P., "The Keystroke-Level Model
for User Performance Time with Interactive Systems,"

c a t i o p g Q f - B e d , 23, 1980, pp. 396-410.

CARD83 Card, S. K., Moran, T. P., and Newell, A., X k P s v c b o l o P v
nf uteL JnteraCtiQR, Lawr e nc e Er 1 bamn
Associates, Hillsdale, N. J., 1983.

-82 Carroll, J. M. andMack, R. L., "Metaphor and Cognitive
Representation of Computing Systems," IEEE-actiom~
PP SxuxmLw ppd 115rbernetics , 12, 1982, pp. 107-116.

-85 Carroll, J. M. and Mack, R. L., "Metaphor, Computing
Systems and Active. Learning," h t e r n a t i - lournalpf

Studies, 22 (11, January 1985, pp. 39-57.

CHAS73 Chase, W. G. and Simon, H. A., "Perception in Chess,"
vc ~SVC-, 4, 1973, pp. 55-81.

89

cHIU85 Chi, U. I., "Formal Specification of U s e r Interfaces: A
Comparison and Evaluation of Four Axiomatic Approaches,"
IEEE Transactippd Qn - E n g b e e r b L g , SE-11 (81,
1985, pp. 671-685.

COCH84 Cochran, D. R., Hobbs, R. W., and Meason, R. N., Survev
and Bpalvs is nf User Cmnuter Interface U Prototv-
Tools, Computer Technology Associates Technical Report,
Landover, Md., February 1984.

CROF84 Croft, W. B., "The Role of Context and Adaptation in User
Interfaces," int e ma t i onal Journal&
Studies, 21, 1984, pp. 283-292.

CUFF80 Cuff, R. N., "On Casual Users," International lournalnf
Studiex, 12, 1980, pp. 163-187.

CURT84 Curtis, B., Forman, I., Brooks, R., Soloway, E., and
Ehrlich, K., "Psychological Perspectives for Software
Science," Information f i o c e s s ~ and-, 20
(1-2). 1984, pp. 81-96.

CYER63 Cyert, R. M. and March, J. G., A-vioral Theorvnfthc
Firm, Prentice-Hall, Englewood Cliffs, N. J., 1963.

D A M 3 Dagwell, R. and Weber, W., "System Designers' User
A Comparative Study and Methodological

26 (ll), November
Models:
Cr i t ique , " -i c a t i QPS
1983, pp. 987-997.

DATE84 Date, C. J., "Some Principles of Good Language Design,
BsM RECORn 14 (3 1 , November 1984, pp. 1-7.

"Chunks: A Basis for Complexity
- d W , 20

DAVI84 Davis, J. B.,
Measurement, - IPfoFllt ion ProcesslnP
(1-21, 1984. pp. 119-127

DAVI83 Davis, R., "Task Analysis and User Errors: A Methodology
for Assessing Interactions," W n a t i o d Journalnf

ICS, 19, 1983, pp. 561-574.

DEGR80 DeGreene, K. B., "Major Conceptual Problems in the System
Management of Human Factor/Ergonomics Research,"
-, 23, 1980, pp. 3-11.

DEME81 Demers, R. A., "System Design for Usability,"
-pfUm, 24, 1981, pp. 494-501.

~ ~~

-78

-79

Dai4.I 84

DOUG82

DRAP84

DRAY8 1

DUB08 1

90

Dominick, W. D. and Urban J. E., Abblicatian P f P
G e n e r d ized h l g Y U L

t e w t n f
- - fnr

iQn with 3 h MADAM * . e U L 3 h UIUversitv
, Technical Report W S - 7 8 - 6 - 3 , Sauthwestern Lon1s1nnn

Computer Science Department, University of Southwestern
Louisiana, Lafayette, Louisiana, September 1978, 347p.

. .

Dominick, W. D. and Penniman, W. D., "Automat ed
Monitoring to Support the Analysis and Evaluation of

P r o c e e d i w P f - S e c a n d
International S t o r a P c d
Information Systems,"

-Qn-
trieval. mSIGIREQlUM, XIV (2), September 27-28,

1979, pp. 2-9.

Dominick, W. D., "The USL NASA PC R&D Project:
Specifications of Objectives," Y S L / D W

&Der Series, Report Number DIMS.NASA/PC R&D-2,
June 6, 1984, 6p.

Douglas, S . A. and Moran, T. P., "Learning Text Editing
Semantics by Analogy," ProceedinPs n f _ t h e S I < i (3 3 H I d , t a c
l€umal Factors Sac i etx C o n f c r c n c t Q l L H r n n a p - i p

uti- S v s t m , Boston, MA, December 12-15, 1983, pp.
207-211.

Draper, S. W. and Norman, D. A., "Software Engineering

Conftrence PP Softwarc E R g h e e r i I A g , Orlando, Fla., March
for U s e r Interfaces," p r o w - DLh h t e r p a t i o l l d

26-29, 1984, pp. 214-220.

Dray, S. M., Ogdan, N. G., and Vestewig, B. E.,
Menu-Selection

pfLk25thAnnaal
"Measar ing Performance with
Human-Computer Interface," P r o c e e d i w

et1- pf a Huraan Factor Societv , Rochester, N. Y.,
1981.

a

Du Boulay, B., 0, Shea, T., andfink, J., "The Black Box
Inside the Glass Box: Presenting Computing Concepts to
Novices,= -I.nternatiopq,L loarnalnf Miukmshine Studies,
14, 1981, pp. 237-250.

DUNS82b Dunsmore, H. E., and Reisncr, P., "Some Further Evidence
on the Formal Gramner Application to Human Factors
Research," Technical Report 348, Department of Computer
Sciences, Purdue University, 1982.

91

DURH8 3

DURR82

DZ 1.D7 8

U S 0 8 0

E 8 1

E 8 2

EHR183

Durham, I., Lamb, D., and Saxe, J., "Spelling Corrections
in User Interfaces," Comaunicatians PftheBed, 26 (lo),
October 1983, pp. 764-773.

Durrett, J. and Stimnel, T., "A Production System Model
of Human-Computer Interaction," proceedi- Human
~ ~ A U - L S ~ S , Gaithersburg, m., March
15-17, 1982, pp. 393-399.

Dzida, W., Herada, S. L., and Itzfeldt, W. D., "User
Perceived Quality of Interactive Systems," IEEE
-QlA&mxi.r& J h g i n e e r u , SE-4, 1978, pp.
270-276.

Eason, K. D., "Dialogue Design Implications of Task
Allocation between Man and Computer," ErPonoraics 9 23,
1980, pp. 881-891.

Edmonds, E. A., "Adaptive Man-Computer interfaces," in

and-- Interface, Academic Press, London, 1981, pp.
Coombs, M. J., and Alty, J. L., (Eds.), *sLills

389-426.

Edmonds, E., "The Man-Computer Interface: A Note on
Concepts and Design," -International Jaurnalpf

ine Studies, 16, 1982, pp. 231-236.

Ehrich, R. W., "W - A System for Defining and Managing
Human Computer Dialogues," Autalaatica , 9 (61, 1983, pp.
655 -662

EMBL78a hbley, D. W., " h p i r i c a l and Formal Language Design
Applied to a Unified Control Construct for Interactive

10 (21, M a r c h 1978, pp. 197-216.
Compu t i ng , " ht e r u t i anal Journal pf mkhhAbw Studies,

EMBL78b Bnbley, D. W., Lan, M. T., Leinbaugh, D. W., and Nagg,
G. 9 "A Procedure for Predicting Program Editor
Performance from the User's Point of View," Jnter-
Journal pf - S t u d i m , 10, 1978, pp. 639-650.

FELD82 Feldman, M. and Rogers, G., "Toward the Design and
Development of Style-Independent Interactive Systems,"
P r o c e e w Humdp Eactors in Svstems,
Gaithersburg, M)., March 15-17, 1982, pp. 89-100.

FEN181 Fenichel, C. H., "Online Searching: Measures that
Discriminate among Users with Different Types of
Experiences," -tbk ASIS, January 1981, pp.
23-32.

92

FERR8 3

FEY07 7

FOLE7 4

FOLE80

FOLE8 2

FOLE8 4

FOSS82

GAIN8 1

GEBH7 8

GELL83

GENT8 2

Ferrari, D., Serrazi, G., and Zeigner, A.,
4pd TuninP pf m u t e r Svatsms., Prentice-Hall, 1983.

Feyock, S., "Transition Diagram-Based CAI/Help Systems,'
t erna t i o d Jaurnal pf Man-MachineStudies , 9, 1977,

pp. 399-413.

Foley, J . D. and Wallace, V. L., "The Art of Natural

April 1974, pp. 462-471.
Graphic Man-Machine Conversation, " proceed- * IEEE, 6 2 ,

Foley, J . D., "The Structure of Interactive Command
Languages," in Guedj, B. A., tenHagen, P. J . , Hopgood, F.
R., Tucker, H. A., and DUCC, D. A. (Eds.), w d o l u p f
Interactiop, North-Holland, Amsterdam, 1980, pp. 227-234.

Foley, J . D. and V a n Dam, A,, Fundamental% nf m u t e r
GraDhics, Addison-Wesley, Reading, MA., 1982.

Foley, J . D., Wllace, V. L., and Chan, P., "The Human
Factors of Computer Graphics Interaction Techniques,"
IEEE cQruuBl Graab ics and Applications, Nov. 1984, pp.
13-48.

Foss, D. J . , Rosson, M. D., and Smith, P. L., "Reducing
M a n u a l Labor: An Experimental Analysis of Learning A i d s

m s v s t w , Gaithersburg, M. D., M a r c h 15-17, 1982,
for a Text Editor," proceedi- -HumanFactars in

pp. 332-336.

Gaines, B. R., "The Technology of Interaction-Dialogue

Studies, 1 4 (11, 1981, pp. 133-150.
Programning Rules," l n t e m n t i o n a l aLwulmLpf-

Gebhardt, F. and Stellmacher, I. "Opinion Papcre: D e s i g n
Criteria for Documentation Retrieval Languages," Jaurnal
p f - u , J u l y 1978, pp. 191-199.

Geller, V. J. and Lesk, M. E., "User Interfaces to
Information Systems: Choices vs. Comnands," P-
fi Uter P a t i o r m l . a S I G L X C O n f ~ f c , Bethsada, Ml.,
June 6-8, 1983, pp. 130-135.

Gentner, D. and Gentner, D. R., "Flowing Waters or
Teeming Crowds: Mental M o d e l s of Electricity," in
Gentner, D., and Stevens, A. S., (Eds.), m n t a l W e l s ,
Lawrence Erlbaum Associates, Hillsdale, N. J., 1982, pp.
99-129.

GILF82

GOOD8 2

GOUL84

GREE8 1

GREE83

GREE85

GUED8 0

GUES82

-83

HALA8 2

HALL84

93

Gilfoil, D. M., "Warming Up to Computers: A Study of
Cognitive and Affective Interaction over Time,"
p r o c e e d i w Factors ip m u t e i S v s m ,
Gaithersburg, MI., March 15-17, 1982, pp. 245-250.

Good, M., "An Ease of Use Evaluation of an Integrated

muter. S&%.L!zan&, Gaithersburg, Mi??March 15-17,
Document Processing System," Proceedi -HumanFactors
1982, pp. 142-147.

Gould, J. D. and Bois, S. J., "Speech Filing - An Office
System for Principals," LWSvstcm-, 23 (11, 1984,
pp. 65-81.

Green. M., "A Methodology for the Specification of
Graphical User Interfaces," m u t e r Grapbics , 15 (31,
August 1981, pp. 99-108.

Green, M., "A Catalogue of Graphical Interaction
Techniques," m u t e r W c s , January 1983, pp. 46-52.

Green, M., "The University of Alberta User Interface
Management System," AfM SIGGRAPH, 19 (31, 1985, pp.
205-213.

Guedj, R. A., "Remarks on Some Aspects of Man-Machine
Interaction," in Guedj, R. A., tedlagen, P. J., Hopgood,
F. R., Tucker, H. A., and Duce, D. A., (Eds.), - pf JJlteractiop , North-Holland, Amsterdam,
1980, pp. 235-238.

Guest, S. P., "The Use of Software Tools for Dialogue
Designs, " Jntcrnat i& Journal Q€ Studies 9

16, 1982, pp. 263-289.

Hagglund, S. and Tibell, R., "Multi-Style Dialogues and
Control Independence i n Interactive Software," in Green,
T. R., Payne, S. J., and van der Veer, G. C., (Eds.),
P R S X S ~ U ~ J L pf u, Academic Press, London, 1984,
pp. 171-189.

Halasz, F. G. and =ran, T. P., "Analogy Considered

Gaithersburg, hD., March 15-17, 1982, pp. 383-386.
Harmful, Proceedi- -aumanFactorsinmw,-,

Hall, P. P., "Design Criteria for a PC-Based Comnon User
Interface to Remote Information Systems," -NASA - m Paber -ies , Report Number D m . N A S A / P C
RBu)-9, August 13, 1984, 21P.

94

Conman
StaraPe- Uscr Intcrfacc &L &nUu&-

t r i e v a l Sastems, M a s t e r Thesis, University of
Southwestern Louisiana, Lafayette, Louisiana, 1985, 83p .

HALL85a Hall, P. P., l l ~ D & g . n & -SI. A E-Based

HALL85b Hall, P. P., "PC-Based Multiple Information System
Interface - Detailed Design and Implementation Plan,"
lIwAmisNASA/PC=PYPrk iu Series, Report Number
DM.NASA/PC RHI-16, April 10, 1985, 69p.

HALs77

" A 8 0

HARD8 2

HART7 9

HAUP83

HAYES 1

HaDG85

HOLC85

HOR08 5

INN08 2

Halstead, M. H., -&software S c i e u , Elsevier
North-Holland, New York, 1977.

Hanau, P. R. and Lenorovitz, D. R., "Prototyping and
Simulation Tools for User/Computer Dialogue Design," - EuLDhics , 14 (3 1 , July 1980, pp. 271-278.

Hardy, I. T. Jr., "The Syntax of Interactive Comnand
Languages: A Framework for Design," Software-Practice
NUL Experience , 12, 1982, pp. 67-75.

Hartson, H. R., and Schnetzler, M. D., - i z e d
eractivc User Interface R 2 g Resi- , Computer

Science Working Paper, Virginia Polytechnic Institute and
State University, Blacksburg, VA., 1979.

Hauptmann, A. G. and Green, B. F., "A Comparison of
Conmand, Menu-Selection and Natural-Language Computer
Programs," m v ior 4PdInfol-rllation 3hAmhgx, 2 (21,
1983, pp. 163-178.

Hayes, P., Ball, E., and Reddy, R., "Breaking the
Man-Machine Comnunication Barrier," m u t e r , 14
(31, 1981, pp. 19-30.

Hodgson, G. M. and Ruth, S. R., "The Use of Menus in the
Design of On-Line Systems: A Retrospective View," S L G C
Bulletin, 17 (l), 1985, pp. 16-22.

Holcomb, R. and "harp, A. L., "The Effect of Windows on
Man-Machine Interfaces (or opening doors with windows),m
ProctcdinPs pf U 1985 AQd C ~ U S L L Z Science - 9

New Orleans, LA, March 12-14, 1985, pp. 280-291.

Horowitz, E., Kemper, A., and Narasimhan, B., "A Survey
of Application Generators," IEEESoftware, January 1985,
pp. 40-54.

Innocent, P. It., "Towards Self-Adaptive Interface
Sys t ems, ,. International Journal ef Stndiet,
16, 1982, pp. 287-299.

9s

IvES83 Ives, B., OlsGn, M. H., and Baroudi, J. J., "The
Measurement of User Information Satisfaction,"
h z x n u n u n i a n s p f l h & A Q & 26 (101, October 1983, pp.
785-793.

JAC083a Jacob, It. K., "Using Formal Specifications in the Design
of a Human-Computer Interface," -catiqpg nf3.h
Bed, 26 (41, April 1983, pp. 259-264.

. . JAC083b Jacob, R. K., Survev & nf a c i f i c a t i p p
iaues fnr User Interfaces, NRL Report, Naval

Research Laboratory, Washington, D. C., 1983.

KAMR83 Kamran, A. and Feldman, M. B., "Graphic Programning
Independent of Interaction Techniques and Styles,"
GQmXMAL Siraahics , January 1983, pp. 58-66.

KAS182 Kasik, D. J., "A User Interface Management System,"
-GraDhics , 16 (31, July, 1982, pp. 99-106.

ICIER82 Kieras, D. E. and Polson, P. G., & -roach 3.h
EQrmaL BPalPS is pf UserCpmplcxiu , Project on the User
Complexity of Devices and Systems, Working Paper No. 2.,
University of Arizona and University of Colorado, 1982.

KRAU80 Krause, J., "Natural Language Access to Informtion
Systems: An Evaluation Study of i t s Acceptance by End
Users, " ' S v s t m , 5, 1980, pp. 297-318.

LAND83 Landauer, T. K., Galotti, K . M., and Hartwell, S.,
"Natural Comnand Names and Initial Learning: A Study of
Text Editing Terms," - i c a t i m p f - t b L . B (M , 26 (71,
July 1983, pp. 495-503.

L-80 Ledgard, H., Whiteside, J. A., Singer, A., and Seymour,
"The Natural Language of Interactive Systems,"

Comaunicationspf-tbL.A<Tull, 23, 1980, pp. 556-563.
w. 9

LEw182 Lewis, C. A. and Mack, B., "Learning to Use a Text
Processing System: Eveidence from 'Thinking Aloud'

S v s t m , Gaithersburg, m., March 15-17, 1982, pp.
Protocols," Proceedi- - HumaR Factors in IhInB!uteL

387-392.

LIE885 Lieberman, H., "There's More to Menu System Than M e e t s
the Screen," m s I c c R A p H , 19 (31, 1985, pp. 181-189.

LIND85 Lindquist, T. E., "Assessing the Usability of
Human-Computer Interfaces," IEEESoftwarc, January 1985,
pp. 74-82.

96

LING82 Ling, M. M., "Designing Data Entry Programs Using State
Diagrams as a Conmon Model," ProcccdinPs: u
Internatianal Conferenct PP Software E n g i I l s e r h g e Tokyo,
Japan, September 13-16, 1982, pp. 296-308.

LINS82 Lin Sin Cho, J. R., "Automatic Report Formatting from a
Report Specification," m u t e r J o u r a , 25 (21,
1982, pp. 242-247.

LISK75 Liskov, B. H. and Zi l l e s , S., "Specification Techniques
for Data Abstractions," Proceedi ter-
Confcrencc Q n B e l i a b l e Software, ASM %&LAN, 10 (61,
1975, pp. 72-87.

-84 Maeda, K., Miyake, Y., Nivergelt, J., and Saioo, Y., "A
Comparative Study of the Man-Machine Interfaces in
Interactive Systems," -Bullet in, 16 (21, act. 1984,
pp. 44-61.

MAGU82 Maguire, M., "An Evaluation of the Pub1 ished
a Recomnendations on the Design of Man-Computer Dialogues,"

International Journal pfMan=Machine Studies , 16, 1982,
pp. 237-261

nf interactive
G r a U Lanpuapes, The MIT Press, Cambridge,
MA., 1982.

. . MALL82 Mallgren, W. R., S p e c i f i c a t i m

MAL082 Malone, T. W., "Heuristics for Designing Enjoyable User
Interfaces: Lessons from Computer Games," m c e e d '
-Factors in m u t e r S v s t m , Gaithersburg,
March 15-17, 1982, pp. 63-68.

MART73 Martin, J., DesiPn nf u t e r
Prentice-Hall, Englewood Cliffs, N. J., 1973.

MART82 Martin, 3 . . Bpplicat iQn Develoament -ut J-xm===*
Prentice-Hall, Englewood Cliffs, N. J., 1982.

"Prototyping
athe Interactive Information Systems," -cat-

MAS083 Mason, R. E. A. and Carey, T. T.,

u, 26 (5 1 , Mag 1983, pp. 347-354.

MAYE79 Mayer, B. E., "A Psychology of Learning BASIC,"
-nftheBed, 22, 1979, pp. 589-593.

MAYE81 Mayer, R. E., "The Psychology of How Novices Learn
Computer Programning," ' S b z z s ~ ~ , 13, 1981,
pp. 121-141.

97

MEAD78 Me a d , R. L. and Schwetman, H. D., "Job Scripts - A
Workload Description Based on System Event Data,"
Proceedinps. - A E L E S N ~ ~ ~ Q M L -, 1978,
pp. 457-464.

&u&uRHm
, Ph. D.

M I C H 8 1 Michelsen, C. D., ~ Q b j e c t i v ~ E v a l u a t i o p

Dissertation, University of Southwestern Louisiana,
Lafayette, Louisiana, August 1981, 365p.

Svstems U t i l i z i W L Software UhlcctL Princiales

MILL56 Miller, G. A., "The Magical Number Seven Plus or M i n u s
-0 : Some Limits on our Capacity for Processing
Information," Psvc-ical B e v i e w , 63, 1956, pp. 81-97.

MILL77 Miller, L. A., and Thomas, J. C., "Behavioral Issues in

hine Studies, 9, 1977, pp. 509-536.
the Use of Interactive Systems," I p t e r p q t i o d Journal&

MILL71 Miller, R. B., HJJIMR East nf usci Criter ia d Thtir
W e o f f s Technical Report TR00.2185, IHbl Poughkeepsie
Laboratory, April 12, 1971, 16p.

M)RA80 Moran, T. P., "A .Framework for Studying Human-Computer
Interaction," in Guedj, R. A., tcflagen, P. J . , Hopgood,
F. R., Tucker, H. A., and D U C C , D. A., (Eds.), - nf JnteractiQR , North-Holland, 1980, pp.
293-301.

M)RA8la M o r a n , T. P., "The Comnand Language Gramner: A
Representation for the User Interface o f Interactive

Studies, 15, 1981, pp. 3-50.
Computer Systems," l n t e r u t i o d Journal Qf -ine

M l R A 8 1 b Moran, T. P., "Guest Editors Introduction: An Applied
Psychology of the User," u- . Survevs, 13. 1981,
pp. 1-12.

m R L 8 3 Morland, D. V., "Human Factors Guidelines for Terminal
Interface Design," Comaunications Q€ am, 26 (71 ,
1983.

=E82 Mozeico, H., "A Human/Computer Interface to Accomodate
User Learning Stages," Camnunications nfam, 25 (21,
1982, pp. 100-104.

McMp77 M I W S Development Comnitee, Lanpuape Standard,
American National Standards Institute, N e w York, 1977.

98

A4YL080 Mglopoulos, J., Bernstein, P., a n d w o n g , H., "A Lauguage
Facility for the Design of Interactive Database-Intensive

June 1980, pp. 185-207.
Applications," T r a n s a c t i o n s PP Databarc sPs:cxn& , s (21,

NEFM68 Newman, W. M., "A System for Interactive Graphical
Programning," proceedi- - A F I P S ~ J a i n t ~ u t e r . i
C o n f e r e u , 1968, pp. 47-54.

NICK81 Nickerson, R. S., "Why Interactive Computer Systems are
Sometimes Not Used by People Who M i g h t Benefit f r o m

15, Them," Jnternatioaal Journal nf hW&hAhk Studies ,
1981, pp. 469-483.

W E T 8 2 Noethe, V., "User Behavior at System Comnand Language I

Level," m P e r f o r m a n c c , 3 (11, 1982, pp. 5-9.

NOLA74 Nolan, L. E. and Strauss, J. C., "Workload
Characterization for Time Sharing S y s t e m Selection,"
Sof twarc-Pract , 4 (1 1 , 1974, pp. 25-39. ,

i
ice a n d E x D e r i e -

NORMS1 Norman, D. A., "The Trouble with UNIX," Datamatian , 2-7 ,
1981, pp. 139-150.

NORMS2 Norman, D., "Steps Toward a Cognitive Engineering: Design
Rules Based on a n Analysis of Human Error," Proceedinps:
&,UJWL Factors in Canputer S v s t w , Gaithersburg, M). ,
M a r c h 15-17, 1982, pp. 378-382.

N O M 4 Norman, D. A., "Stages and Levels in Human-Machine
Interactions," t t r m t i o a J i l u X u L a -
Studies, 21, 1984, pp. 365-373.

I

OBER84 Oberquelle, H., "On Mo d e l s and Modelling in
Human-Computer Co-operation," in van der Veer, G. C . ,
Tauber, M. J., Green, T. R., and Gorny, P., (Eds.),
Lecture Nates in muter Science , 178, Springer-Verlag,
1984, pp. 23-43.

OLS083a Olson, D. R., "Automatic Generation of Interactive
Systems," m u t e L w h i c s , 1983, pp. 53-57.

OLSO83b Olson, D. B., and Dempsey, E. P., "SYNGRAPH: A Graphical
User Interface Generator," m u t e r w h i c s , 17 (31,
July 1983, pp. 43-50.

OLS085 Olson, D. B., Dempsey, E. P., and Rogge, B.,
"Input/Output Linkage in a User Interface Management i
System," ACMSIGGEAW, 19 (31, 1985, pp. 191-197.

99

PARN69 Parnas, D. L., "On the Use of Transition Diagrams in the
Design of a User Interface for an Interactive Computer
System, " Proctedinps. 2 4 t h k b t i O n n l BLM Canfcrence, 1959,
pp. 379-385.

PAYN84 Payne, S. J., Sime, M. E., and Green, T. R., "Perceptual
Structure Cueing in a Simple Comnand Language,"
Jnt ernat i OML lournal pf Studies , 21, 1984,
pp. 19-29.

PENN80 Penniman, W. D. and Dominick, W. D., "Monitoring and
Evaluation of On-Line Information System Usage,"

timProcessing dpd b h u g a c u , 16, 1980, PP.
17-35.

PIL083a Pilote, M., "A Programning Language Framework for the

PP pr1nc1l,lcs pfProPramnlnp -, ACM, June 1983,
Design of User Interfaces," - nftheConfcrcncc

pp. 118-136.

PIL083b Pilote, M., A -work fnr Desi= nf Linpuist ic Uscr
Interfaces, Ph. D. Thesis, Dept. of Computer Science,
University of Toronto, Toronto, Canada, 1983.

-82 Radhakrishnan, T., Grosoner, C., and Benoliel, M.,
"Design of an Interactive Data Retrieval System for
Casual Users, " Information Process i n g d - , 18
(11, 1982, pp. 23-32.

RAMS83 Ramsey, H . R. and Grimes, J . D., "Human Factors in
Interactive Computer Dialog," &view nf

t i = Science 4pd T c c h n o l o a , 18, 1983, pp. 29-59.

REES85 Reese, J . , Twiddy, R., Buchannan, L., Tarka, M., and
Leung, K. C., "GUIDES: A Tool for Rapid Prototyping of

cfuwm&L Science Conference, March 12-14, 1985, pp.
User-Computer Interfaces," p r o c e e d i w n f t h e 1 9 8 J A m l

272-279.

REIS81 Reisner, P., "Formal Gramner and Human Factor Design of
an Interactive Graphic System," IEEE W a c t i o x u PP

Engineering , SE-7 (2), 1981, pp. 229-240.

REIS83 Reisner, P., "Analytical Tools for Human Factors of
Software," in Blaser, A., and Zoeppritz, M., (Eds.),
Lecturc lwLu in Science , Springer-Verlag, 150,
1983, pp. 94-121.

100

REIS84

RICH83

ROAC8 2

ROBE83

ROB185

ROHR84

ROSE82

ROSE83

RowE83

RIME8 1

Reisner, P., "Formal Granmer as a Tool for Analyzing Ease
of Use: Some Fundamental Concepts,m in Thomas, J. C., and
Schneider, M. L., (Eds.), fJumdp F a c t o r s i p m u t e r
Svst-, Abl e x Publishing Corp., Norwood, N. J., 1984,
pp. 53-78.

Rich, E., "Users are individuals; Individualizing User
Models," hter- lournal nf M u d h c h i ~ Studies,
18, 1983, pp. 199-214.

Roach, J., Hartson, H. R., Ehrich, R., Yunten, T., and
Johnson, Dd, "m: A Comprehensive S y s t e m for Managing
m u t e r S p s t u , Gaithersburg, M). , M a r c h 15-17, 1982,
Human-Computer Dialogue," ProceedinPs, *HmwL Factors in
pp. 102-105.

Roberts, T. L. a n d M o r a n , T. P., "The Evaluation of Text
Methodology and Fmp i r i c a 1 Besul t s , "

-nf a Bed, 26 (41, April 1983, pp.
Edi tors :

265-283.

Robinson, J. and Burns, A., "A Dialogue Development
S y s t e m for the Design and Implementation of User
Interfaces in Ada," % m u t e r JOurnal, 28 (11, 1985,
pp. 22-28.

Rohr, G. and Tauber, M., "Representational Frameworks and
M o d e l s for Human-Computer Interfaces," in van der Veer,
G. C., Tauber, M. J., Green, T. R., and Gorny, P.,

Springer-Verlag, 178, 1984, pp. 8-25.
(E d s . , L c c t u r t N o t t s i p I h I I a g u t c r S c i e m ,

Rosenberg, J., "Evaluating the Suggestiveness of Comnand

Gaithersburg, m., M a r c h 15-17 , 1982, pp. 12-16.
Names," P r o c e e d i w - H u m a n F a c t o r s i A C b m b u t t r m ,

Rosenberg, J., "Featural Approach to Comnand Names,"
P r o c e e d i u GKL '83. Huraan Factors h muter, Svstems,
ACM, 1983, pp. 116-119.

ROWC, L. A., and Shoens, K. A., "Programning Language
Constructs for Screen Definition," IEEE -sacti- aR
Software- , 9 (11, January 1983, pp. 31-39.

Rumelhart, D. E. and Norman, D. A., "Analogical Processes I

s)rills in Learning," in Anderson, J. It., (Ed.), C o p n i t i v e
Their A 4 u 1 s l t 1 m , Lawrence E r l b a u m Associates,

Hillsdale, N. J., 1981, pp. 335-359. I

. .
. . .

101

SAJA8S

SAVA8 4

SEWA75

SCHV8 4

sHNE79

SHNE80

SHNE82

S-80

SING79

M T 8 4

Saja, A. D., "The Cognitive Model: An Approach to
Designing the Human Computer Interface," SI- u,
16 (31, 1985, pp. 36-40.

Savage, R. E. and Habineck, J. K., "A Multilevel
M e n u - D r i v e n User Interface: D e s i g n and Evaluation through
Simulation," in Thomas, J. C., and Schneider, M. L.,

Publishing Corp., Norwood, N. J., 1984, pp. 165-186.
(Eds*), Factors in a-, S i = , Ablex

Seward, H. H., "Evaluating Information Systems," in
McFarlan, F. W., and Nolan, R. L., (Edr.),

t i o n Svstans. -book, D o w Jones-Irwin, Inc.,
Homewood, II., 1975, pp. 132-153.

Schvaneveldt, R., Cooke, N., Durso, F., Onorato, L., and
Bailey, G., "A Taxanomy of Human-Computer Interactions:
Toward a M o d u l a r User Interface," in Salvendy, G., (Ed.),

u t e r h t e r a c t i o p , Elsevier Science Publishers,
Amsterdam, 1984, pp. 121-124.

Shneiderman, B., "Human Factors Experiments in Designihg
Interactive Systems," IEEE m u t e L , 12 (12). December
1979, pp. 9-19.

Shneiderman, B., Softw- Psvcholopv Factors in
m d - S v s t m , W i n t h r o p Publishers,
Inc., Cambridge, MA, 1980.

Shneiderman, B., W u l t i p a r t y Gramnars and Related
Features for Defining Interactive Systems," IEEE
MarchIApril 1982, pp. 148-154.
Transactions PP sbacc MlLp d Cvbernetics , SK-12 (21,

Simon, H. A., "Problem Solving and Education," in Tuma,
D. T., and Reif, F., (Eds.), P r o b l m S o l v i n g ppd

ation : lssues in T e a c h i n g dpd &sear&, Lawrence
E r l b a u m Associates, Hillsdale, N. J., 1980.

Singer, A., Farmal M U w k 4pd Human Factarr in a
Desipn pf Jnteractive L L I p p u a ~ e s , Ph. D. Dissertation,
Computer Information Science Dept., University of
Massachussettes, 1979.

Smith, B. G., Lafue, G.M., Schoen, E., and Vestal, S.
C., "Declarative T a s k Description a s a User-Interface
Structuring Mechanism," IEEE h n n u t e r , September 1984,
pp. 29-37.

102

SPEI83 Speigler, I., "Modelling Man-Machine 1nte:face in a Data
Base Environment," Inttrnational JournalQfMan-Machinc
S t u d i e a , 18, 1983, pp. 55-70.

STUD84 Studer, R., "Abstract Models of Dialogue Concepts,"
ProceedinPs. - ILh h t ~ r n a t i u Canferenct QnSoftwart
-, Orlando, Fla, March 26-29, 1984, pp.
420-429.

T A W 8 5 Tavendale, R. D., "A Tccbnique for Prototyping Directly
from a Specification," Proceed- - U h -International
ConftrenccmSoftwareEnPinetrinP , London, U. K., August
28-30, 1985, pp. 224-229.

THIM80 Thimbley, H., "Dialogue Determination," J n t e r n a t i u
Journal pf - Studies , 13 (31, 1980, pp.
295-304.

TIXB483 Thomas, J. J. and Hamlin, G., "Graphical Input
Interaction Technique (GIIT) Workshop Sumnary," m u t e r

hics, January 1983, pp. 5-30.

USNR83 U. S. National Research Council, W r c h N e e d s fpr
Factors, Comnittee on Human Factors Comnission on
Behavioral and Social Sciences and Education, National
Academy Press, 1983.

WASS79 Wasserman, A. I. and Stinson, S., "A SpecificationMethod
for Interactive Information Systems," P r o c e e d i u P f L h

nf . . =-- Canferencc M W C l f l c a t i U
iable Software, Cambridge, MA., 1979, pp. 68-79.

WASS8l Wasserman, A. I . , "User Software Engineering and the
Design of Interactive System," proceedi-
International--- Engineer- , 1981.
pp. 387-393.

WASS82 Wasserman, A. I., and Shewmake, D. A., "Rapid Prototyping
of Interactive Information Systems," SrGSOFT S o f t w n

e r u N o t e s , 7 (5 1 , December 1982, pp. 171-180.

WASS84 Wasserman, A. I., "Specification and Implementation of
Interactive Information Systems," ProceedinPs. -AFIps
N a t i o w m u t e r Conferenck, 53, 1984, pp. 261-266.

WASS85 Wasserman, A. I., "Extending State Transition Diagrams
for the Specification of Human-Computer Interaction,"
IEEETransactians M Saftware EnPineeriu , SE-11 (81,
August 1985, PP. 699-713.

WILL82 Williams, B., "The Human Side of Information's Converging
Technology," -Bullet in, 9 (21, 1982, pp. 24-26.

103

WILS82 Williger, B. C. and Williger, B. H., "Human-Computer
procee-

1-7s LDesiPnandEvaluatran * QfMan-hAachine - 9

Dialogue Design Considerations,"

Baden-Baden, F.B.G., 1982, pp. 239-246.

W M G 8 2 W o n g , P. C. and Reid, E. R., "FLAIR - User Interface
Dialog Design Tool," m u t e r , 16 (3 1 , July
1982, pp. 87-98. a

YOUN81 Yo u n g , R. M., "The Machine Inside the Machine: Users'
M o d e l s of Pocket Calculators," Internatianal Journalpf

dies, 15, 1981, pp. 51-85.

1. Report No. 2. Government Accession No. /fJ570 3. Recipient's Catalog No.

/ MOHAMMAD U. FAROOQ
10. Work Unit No.

9. Performing Organization Name and Address

4. Title and Subtitle

University of Southwestern Louisiana
The Center for Advanced Computer Studies
P.O. Box 44330

5. Report Date I#' : -,.

11. Contract or Grant No.

NGT-19-010-900

USL/NGT-19-010-900: A METHODOLOGY FOR THE DESIGN AND
EVALUATION OF USER INTERFACES FOR INTERACTIVE INFORMATION
SYSTEMS

7. Authorls) /

January 22, 1986 J ~ i ,'"

6. Performing Organization Code

8. Performing Organization Report No.

16. Abmact
7

This Working Paper Series entry represents the definition of proposed research addressing the
development and validation of a methodology for the design znd evaluation of user interfaces for
interactive information systems. The major objectives of this research are: the development of a
comprehensive, objective, and generalizable methodology for the design and evaluation of user inter-
faces for information systems; the development of equations and/or analytical models to characterize
user behavior and the performance of a designed interface; the design of a prototype sysLem for the
development and administration of user interfaces; and the design and use of controlled experiments
to support the research and test/validate the proposed methodology. The proposed design methodol-
ogy views the user interface as a virtual machine composed of three layers: an interactive layer, a
dialogue manager layer, and an application interface layer. A command ianguage model of user sys-
tem interactions is presented because of its inherent simplicity and structured approach based on
interaction events. All interaction events have a common structure based on common generic eie-
ments necessary for a successful dialogue. It is shown that, using this model, various types of inter-
faces could be designed and implemented to accommodate various categories of users. The imple-
mentation methodology is discussed in terms of how to represent the various types of information
pertaining to an interaction event, and how to store and organize the information. A generalized
evaluation methodology is also proposed for the evaluation of user interfaces. The methodology will
allow interface developers to evaluate user interfaces from the viewpoint of the performance of their
users.

Lafayette, LA 70504-4330
12. Sponsoring Agency Name and Address

(Abstract continued on following page)

13. Type of Repon and Period Covered

FINAL; 0 7 / 0 1 / 8 5 - 1 2 / 3 1 / 8 7

14. Sponsoring Agency Code

17. Key Words (Suggested by Author(s))

Design and Evaluation of User
Interfaces, Information Storage and
Retrieval Systems

*For sale by the National Technical Information Service, Springfield, Virginia 221 61

18. Distribution Statement

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. NO. of Pages

Unclassified . Unclassified 103

22. Rice'

